scholarly journals Motivating Teachers to Teach Computing in Middle School – A Case Study of a Physical Computing Taster Workshop for K-12 Teachers

Author(s):  
Aldo Von Wangenheim ◽  
Christiane Gresse von Wangenheim ◽  
Fernando S. Pacheco ◽  
Jean C. R. Hauck ◽  
Miriam Nathalie F. Ferreira

Computing education in schools faces several problems, such as a lack of computing teachers and time in an already overloaded curriculum. A solution can be a multidisciplinary approach, integrating the teaching of computing within other subjects, creating the need to motivate teachers from other disciplines to teach computing in middle school. Therefore, the motivation and training of in-service teachers becomes crucial, as they need to have computing content and technological knowledge as well as pedagogical content knowledge. Yet, so far there exist very few training programs. Thus, as part of a comprehensive outreach program, we present a study on a one-day taster workshop for middle school teachers on physical computing education. Participants learn computer programming practice and computational thinking by programming an interactive robot. The workshop also approaches pedagogical aspects for teaching computing and technical issues regarding the installation and preparation of the required hardware/software. Preliminary results of its application with public school teachers in Florianopolis/Brazil are positive, motivating the majority of participants to introduce computing into their classes. However, our results also highlight that in order to enable teacher to apply the workshops effectively, longer training courses and ongoing support is required.

2021 ◽  
pp. 0013189X2110579
Author(s):  
Yasmin B. Kafai ◽  
Chris Proctor

Over the past decade, initiatives around the world have introduced computing into K–12 education under the umbrella of computational thinking. While initial implementations focused on skills and knowledge for college and career readiness, more recent framings include situated computational thinking (identity, participation, creative expression) and critical computational thinking (political and ethical impacts of computing, justice). This expansion reflects a revaluation of what it means for learners to be computationally-literate in the 21st century. We review the current landscape of K–12 computing education, discuss interactions between different framings of computational thinking, and consider how an encompassing framework of computational literacies clarifies the importance of computing for broader K–12 educational priorities as well as key unresolved issues.


2018 ◽  
Vol 3 (3) ◽  
pp. 51 ◽  
Author(s):  
Lauren Birney ◽  
Denise McNamara

This article provides an overview of the work pioneered by the consortium of collaborators in the Billion Oyster Curriculum and Community Enterprise for Restoration Science Project (BOP-CCERS). The BOP-CCERS are working to support computational thinking in the New York City public school classrooms by creating curriculum which combines:1. The Field Station Research (Oyster Restoration Stations) and data collection2. The Billion Oyster Project Digital Platform and data input and storage 3. The New York State Science Intermediate Level Learning Standards. 4. The Computer Science Teachers Association K-12 Computer Science StandardsThe integration of computational thinking in the STEM middle school classroom is showcased through the intertwining of these dimensions into a trans-disciplinary learning experience that is rich in both content and practice. Students will be able to explain real-world phenomena found in their own community and design possible solutions through the key components of computational thinking.The Curriculum and Community Enterprise for Restoration Science Project digital platform and curriculum will be the resources that provide the underpinnings of the integration of computational thinking in the STEM middle school classroom. The primary functions of the platform include the collection and housing of the data pertaining to the harbor and its component parts, both abiotic and biotic and the storage of the curriculum for both the classroom and the field stations.


2019 ◽  
Author(s):  
Hayden Fennell ◽  
Joseph A. Lyon ◽  
Aasakiran Madamanchi ◽  
Alejandra J. Magana

The conceptualization of Computational Thinking as a cross-cutting skill with relevance across disciplines has ushered in wide-ranging efforts to increase computational education in all facets of education. However, the majority of initiatives for integrated computing education have focused on K-12 settings, as has most education research around computational thinking. At the postsecondary level, computing education remains largely siloed within specific programming courses and has not been well-integrated throughout the STEM curriculum. Current instructional approaches often leave students poorly prepared to transfer their computing knowledge to solve new real-world problems. Additionally, there is limited education research into how best to develop computational thinking among postsecondary students. In fact, education research into computational thinking remains undertheorized and is often definitional in nature. Here, we integrate computational thinking with the educational psychology concept of adaptive expertise. Finally, we contextualize computational thinking within constructivist learning theories by introducing computational apprenticeship, an application of cognitive apprenticeship to computing. Computational apprenticeship provides a research and practice model for supporting the development of computational adaptive expertise.


Author(s):  
Adem Ekmekci ◽  
Anne Papakonstantinou ◽  
Richard Parr ◽  
Miten Shah

Providing a study on mathematics teachers' technological pedagogical content knowledge (TPACK), the goal of this chapter is to investigate the predictive value of teachers' beliefs (e.g., self-efficacy) and mathematical knowledge for teaching (MKT) on their level of TPACK. Background variables, gender, ethnicity, certification, experience, and mathematics degree were all controlled for in this study. Two-step regression analysis results by school level (K-5, middle, and high) indicate that standards-based mathematics teaching beliefs positively predict mathematics teachers' level of TPACK for all teachers. Having a college/graduate mathematics degree is more predictive of TPACK for K-5 and middle school teachers while MKT is more predictive of TPACK for high school teachers. In addition, elementary teachers' mathematics self-concept and pedagogical preparedness and middle school teachers' mathematics teaching interest were significantly related to their level of TPACK. The implications for school districts and teacher preparation programs to develop TPACK for teachers are discussed.


Author(s):  
Jennifer R Head ◽  
Kristin Andrejko ◽  
Qu Cheng ◽  
Philip A Collender ◽  
Sophie Phillips ◽  
...  

Background Large-scale school closures have been implemented worldwide to curb the spread of COVID-19. However, the impact of school closures and re-opening on epidemic dynamics remains unclear. Methods We simulated COVID-19 transmission dynamics using an individual-based stochastic model, incorporating social-contact data of school-aged children during shelter-in-place orders derived from Bay Area (California) household surveys. We simulated transmission under observed conditions and counterfactual intervention scenarios between March 17-June 1, and evaluated various fall 2020 K-12 reopening strategies. Findings Between March 17-June 1, assuming children <10 were half as susceptible to infection as older children and adults, we estimated school closures averted a similar number of infections (13,842 cases; 95% CI: 6,290, 23,040) as workplace closures (15,813; 95% CI: 9,963, 22,617) and social distancing measures (7,030; 95% CI: 3,118, 11,676). School closure effects were driven by high school and middle school closures. Under assumptions of moderate community transmission, we estimate that fall 2020 school reopenings will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1), and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). Results are highly dependent on uncertain parameters, notably the relative susceptibility and infectiousness of children, and extent of community transmission amid re-opening. The school-based interventions needed to reduce the risk to fewer than an additional 1% of teachers infected varies by grade level. A hybrid-learning approach with halved class sizes of 10 students may be needed in high schools, while maintaining small cohorts of 20 students may be needed for elementary schools. Interpretation Multiple in-school intervention strategies and community transmission reductions, beyond the extent achieved to date, will be necessary to avoid undue excess risk associated with school reopening. Policymakers must urgently enact policies that curb community transmission and implement within-school control measures to simultaneously address the tandem health crises posed by COVID-19 and adverse child health and development consequences of long-term school closures.


2005 ◽  
Vol 24 (3) ◽  
pp. 142 ◽  
Author(s):  
Nancy P. Shires

<span>A workshop sponsored by the North Carolina Collection at East Carolina University to familiarize middle school teachers with the Eastern Carolina Digital History Exhibits and provide lesson plans for the site revealed (1) the need for teachers and librarians to work more closely together in the design and use of new digital history resources and (2) the benefits of cooperative efforts. Although the K–12 community generally welcomes digital resources, teachers face important challenges, such as redesigning the curriculum. What the teachers had to say, as well as a few other unexpected findings, proved beneficial to the librarians in creating sites. Small workshops were shown to be useful to both teachers and librarians.</span>


2021 ◽  
Author(s):  
Andrew Patrick Cook

As a tangible and motivating medium for students to engage in computational thinking, robotics has drawn interest from educators and researchers as K-12 schools continue to integrate STEM into curriculum. Through this mixed methods study, the researcher sought to explore the effects of robotics instructional methods (task-based and project-based) on the computational thinking skills of middle school students, including the problem-solving strategies used and the role of peer collaboration. The quantitative results of this study indicated no significant difference in the computational thinking skills of students participating in task-based or project-based robotics instruction. Interviews consisted of open-ended questions in which problem-solving and collaboration in robotics were explored from the perspectives of the participants. In both groups, problem-solving strategies encompassed all aspects of computational thinking as students took an iterative approach to problem-solving in both tasks and projects. Peer collaboration was naturally occurring and frequent among both groups. In task-based robotics instruction, peer collaboration and problem-solving strategies were primarily focused on the programming of the robot. In project-based robotics, peer collaboration and problem-solving strategies were applied throughout the entire design process, including the building and the programming of the robot. Through this study, the researcher hoped to provide a roadmap for the implementation of robotics in schools for K-8 students. As schools are increasingly seeking ways to integrate robotics into school curriculum, further research in this area on a larger scale is recommended.


Sign in / Sign up

Export Citation Format

Share Document