scholarly journals An improved variational mode decomposition method and its application in diesel engine fault diagnosis

2018 ◽  
Vol 20 (6) ◽  
pp. 2363-2378 ◽  
Author(s):  
Jianmin Mei ◽  
Gang Ren ◽  
Jide Jia ◽  
Xiangyu Jia ◽  
Jiajia Han ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 661 ◽  
Author(s):  
Xiaoyang Bi ◽  
Shuqian Cao ◽  
Daming Zhang

The evaluation and fault diagnosis of a diesel engine’s health conditions without disassembly are very important for diesel engine safe operation. Currently, the research on fault diagnosis has focused on the time domain or frequency domain processing of vibration signals. However, early fault signals are mostly weak energy signals, and the fault information cannot be completely extracted by time domain and frequency domain analysis. Thus, in this article, a novel fault diagnosis method of diesel engine valve clearance using the improved variational mode decomposition (VMD) and bispectrum algorithm is proposed. First, the experimental study was designed to obtain fault vibration signals. The improved VMD method by choosing the optimal decomposition layers is applied to denoise vibration signals. Then the bispectrum analysis of the reconstructed signal after VMD decomposition is carried out. The results show that bispectrum image under different working conditions exhibits obviously different characteristics respectively. At last, the diagonal projection method proposed in this paper was used to process the bispectrum image, and the fourth order cumulant is calculated. The calculation results show that three states of the valve clearance are successfully distinguished.


Author(s):  
Xueli An ◽  
Hongtao Zeng ◽  
Chaoshun Li

A new time–frequency analysis method, based on variational mode decomposition, was investigated. When a gear fault occurs, its vibration signal is nonstationary, nonlinear, and exhibits complex modulation performance. According to the modulation characteristics of the gear vibration signal arising from faults therein, a gear fault diagnosis method based on variational mode decomposition and envelope analysis was proposed. The variational mode decomposition method can decompose a complex signal into several stable components. The obtained components were analyzed by envelope demodulation. According to the envelope spectrum, gear faults can be diagnosed. In essence, the variational mode decomposition method can decompose a multi-component signal into a number of single component amplitude modulation–frequency modulation signals. The method is suited to the handling of multi-component amplitude modulation–frequency modulation signals. The simulated signal and the actual gear fault vibration signals were analyzed. The results showed that the method can be effectively applied to gear fault diagnosis.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 44871-44882 ◽  
Author(s):  
Zhijian Wang ◽  
Gaofeng He ◽  
Wenhua Du ◽  
Jie Zhou ◽  
Xiaofeng Han ◽  
...  

2020 ◽  
pp. 147592172097085
Author(s):  
Xingxing Jiang ◽  
Jun Wang ◽  
Changqing Shen ◽  
Juanjuan Shi ◽  
Weiguo Huang ◽  
...  

Variational mode decomposition has been widely applied to machinery fault diagnosis during these years. However, it remains difficult to set proper hyperparameters for the variational mode decomposition, including number of decomposed modes, initial center frequencies, and balance parameter. Moreover, the low efficiency of the existing variational mode decomposition methods hinders their applications to practical diagnostic task. This article proposes an adaptive and efficient variational mode decomposition method after thoroughly investigating its convergence property characteristic. A convergent tendency phenomenon is discovered and is explained mathematically for the first time. Motivated by the convergent tendency phenomenon, the proposed method rapidly and adaptively determines the number and the optimal initial center frequencies of signal latent modes with the guidance of the convergent tendencies of the initial center frequencies changing from small to large. In the proposed method, the number of decomposed modes and initial center frequencies are not hyperparameters that require to be set in advance any more, but are parameters learned from the analyzed signals. The determined parameters enable efficient extraction of the main latent modes contained in the analyzed signals. Therefore, the proposed variational mode decomposition method represents a major improvement in parameter adaption and decomposition efficiency over the existing variational mode decomposition methods. In the application for bearing fault diagnosis, the faulty modes are selected adaptively and the corresponding balance parameters are further optimized efficiently. Two experimental cases validate the proposed method and its superiority over the existing variational mode decomposition methods and the classical fast spectral kurtosis in bearing fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document