A dichotomy-based variational mode decomposition method for rotating machinery fault diagnosis

2019 ◽  
Vol 31 (1) ◽  
pp. 015003 ◽  
Author(s):  
Xu Zheng ◽  
Quan Zhou ◽  
Nan Zhou ◽  
Ruijun Liu ◽  
Zhiyong Hao ◽  
...  
Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 470
Author(s):  
Zijian Guo ◽  
Mingliang Liu ◽  
Huabin Qin ◽  
Bing Li

Traditional fault diagnosis methods of DC (direct current) motors require establishing accurate mathematical models, effective state and parameter estimations, and appropriate statistical decision-making methods. However, these preconditions considerably limit traditional motor fault diagnosis methods. To address this issue, a new mechanical fault diagnosis method was proposed. Firstly, the vibration signals of motors were collected by the designed acquisition system. Subsequently, variational mode decomposition (VMD) was adopted to decompose the signal into a series of intrinsic mode functions and extract the characteristics of the vibration signals based on sample entropy. Finally, a united random forest improvement based on a SPRINT algorithm was employed to identify vibration signals of rotating machinery, and each branch tree was trained by applying different bootstrap sample sets. As the results reveal, the proposed fault diagnosis method is featured with good generalization performance, as the recognition rate of samples is more than 90%. Compared with the traditional neural network, data-heavy parameter optimization processes are avoided in this method. Therefore, the VMD-SampEn-RF-based method proposed in this paper performs well in fault diagnosis of DC motors, providing new ideas for future fault diagnoses of rotating machinery.


2019 ◽  
Vol 255 ◽  
pp. 02017 ◽  
Author(s):  
M. Firdaus Isham ◽  
M. Salman Leong ◽  
M. H. Lim ◽  
M. K. Zakaria

Signal processing method is very important in most diagnosis approach for rotating machinery due to non-linearity, non-stationary and noise signals. Recently, a new adaptive signal decomposition method has been proposed by Dragomiretskiy and Zosso known as variational mode decomposition (VMD). The VMD method has merit in solving mode mixing problem in most conventional signal decomposition method. This paper aims to review the applications of the VMD method in rotating machinery diagnosis. The advantages and limitations of the VMD method are discussed. Current solution on VMD limitation also have been review and discussed. Lastly, the future research suggestion has been pointed out in order to enhance the performance of the VMD method on rotating machinery diagnosis.


Author(s):  
Xueli An ◽  
Hongtao Zeng ◽  
Chaoshun Li

A new time–frequency analysis method, based on variational mode decomposition, was investigated. When a gear fault occurs, its vibration signal is nonstationary, nonlinear, and exhibits complex modulation performance. According to the modulation characteristics of the gear vibration signal arising from faults therein, a gear fault diagnosis method based on variational mode decomposition and envelope analysis was proposed. The variational mode decomposition method can decompose a complex signal into several stable components. The obtained components were analyzed by envelope demodulation. According to the envelope spectrum, gear faults can be diagnosed. In essence, the variational mode decomposition method can decompose a multi-component signal into a number of single component amplitude modulation–frequency modulation signals. The method is suited to the handling of multi-component amplitude modulation–frequency modulation signals. The simulated signal and the actual gear fault vibration signals were analyzed. The results showed that the method can be effectively applied to gear fault diagnosis.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8114
Author(s):  
Atik Faysal ◽  
Wai Keng Ngui ◽  
Meng Hee Lim ◽  
Mohd Salman Leong

Rotating machinery is one of the major components of industries that suffer from various faults due to the constant workload. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. In this study, noise eliminated ensemble empirical mode decomposition (NEEEMD) was used for fault feature extraction. A convolution neural network (CNN) classifier was applied for classification because of its feature learning ability. A generalized CNN architecture was proposed to reduce the model training time. A sample size of 64×64×3 pixels RGB scalograms are used as the classifier input. However, CNN requires a large number of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD), and continuous wavelet transform (CWT) are classified. The effectiveness of scalograms is also validated by comparing the classifier performance using grayscale samples from the raw vibration signals. All the outputs from bearing and blade fault classifiers showed that scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity, and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to further increase the CNN classifier’s performance and identify the optimal number of training data. After training the classifier using augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The proposed method can be used as a more generalized and robust method for rotating machinery fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document