scholarly journals Estimation the hydraulic parameters of the fractured aquifer by using spring hydrograph analysis, Lange Bramke basin, Germany (Dept.C)

2020 ◽  
Vol 34 (2) ◽  
pp. 13-30
Author(s):  
Mohammed Gad
2018 ◽  
Vol 1 (1) ◽  
pp. 28-40
Author(s):  
Suneetha Naidu ◽  
Gautam Gupta

Estimation of hydraulic parameters in coastal aquifers is an important task in groundwater resource assessment and development. An attempt is made to estimate these parameters using geoelectrical data in combination with pore-water resistivity of existing wells. In the present study, 29 resistivity soundings were analysed along with 29 water samples, collected from the respective dug wells and boreholes, in order to compute hydraulic parameters like formation factor, porosity, hydraulic conductivity and transmissivity from coastal region of north Sindhudurg district, Maharashtra, India. The result shows some parts of the study area reveal relatively high value of hydraulic conductivity, porosity and transmissivity. Further, a negative correlation is seen between hydraulic conductivity and bulk resistivity. The hydraulic conductivity is found to vary between 0.014 and 293 m/day, and the transmissivity varied between 0.14 and 11,722 m2/day. The transmissivity values observed here are in good correspondence with those obtained from pumping test data of Central Ground Water Board. These zones also have high aquifer thickness and therefore characterize high potential within the water-bearing formation. A linear, positive relationship between transverse resistance and transmissivity is observed, suggesting increase in transverse resistance values indicate high transmissivity of aquifers. These relations will be extremely vital in characterization of aquifer system, especially from crystalline hard rock area.


Author(s):  
A Fatxulloyev ◽  
D Allayorov ◽  
M Otakhonov
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 743
Author(s):  
Patrick Heneka ◽  
Markus Zinkhahn ◽  
Cornelia Schütz ◽  
Roman B. Weichert

High discharges at hydropower plants (HPP) may mask fishway attraction flows and, thereby, prevent fishes from locating and using fishways critical for their access to upstream spawning and rearing habitats. Existing methods for determining attraction flows are either based on simple guidelines (e.g., a proportion of HPP discharge) that cannot address the spatial and temporal complexity of tailrace flow patterns or complicated studies (e.g., combinations of detailed hydraulic and biological investigations) that are expensive and time-consuming. To bridge this gap, we present a new, intermediate approach to reliably determine attraction flows for technical fishways at small to medium-sized waterways (mean annual flow up to 400 m3/s). Fundamental to our approach is a design criterion that the attraction flow should maintain its integrity as it propagates downstream from the fishway entrance to beyond the highly turbulent zone characteristic of HPP tailraces to create a discernable migration corridor connecting the fishway entrance to the downstream river. To implement this criterion, we describe a set of equations to calculate the width of the entrance and the corresponding attraction discharge. Input data are usually easy to obtain and include geometrical and hydraulic parameters describing the target HPP and its tailrace. To confirm our approach, we compare model results to four sites at German waterways where the design of attraction flow was obtained by detailed experimental and numerical methods. The comparison shows good agreement supporting our approach as a useful, intermediate alternative for determining attraction flows that bridges the gap between simple guidelines and detailed hydraulic and biological investigations.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1189
Author(s):  
Malihe Shirafkan ◽  
Zargham Mohammadi ◽  
Vianney Sivelle ◽  
David Labat

In this study, a synthetic modeling approach is proposed to quantify the effect of the amount and direction of the exchange flow on the karstic spring discharge fluctuations under different hydrologic conditions corresponding to high and low flow conditions. We hypothesis that the spring discharge fluctuations constitute a valuable proxy to understand the internal processes of the karst system. An ensemble of spring hydrographs was synthetically produced to highlight the effect of exchange flow by exploring the plausible range of variability of coefficients of exchange flow, conduit diameter, and matrix hydraulic conductivity. Moreover, the change of the rate of point recharge through the karst conduit allows for the quantifying of the sensibility of the spring hydrograph to the directions of exchange flow. We show that increasing the point recharge lies to a remarkable linear recession coefficient (β) as an indication of the conduit flow regime. However, a reduction in and/or lack of the point recharge caused the recession coefficient to change to exponential (α) due to the dominant effect of the matrix restrained flow regime and/or conduit-influenced flow regime. The simulations highlight that the exchange flow process from the conduit to the matrix occurred in a short period and over a restricted part of the conduit flow regime (CFR). Conversely, the exchange flow dumped from the matrix to the conduit occurs as a long-term process. A conceptual model is introduced to compare spring hydrographs’ characteristics (i.e., the peak discharge, the volume of baseflow, and the slope of the recession curve) under the various flow conditions with the directions of the exchange flow between the conduit and the matrix.


Sign in / Sign up

Export Citation Format

Share Document