scholarly journals Friction Power Approach for The Evaluation of Wear in Centrifugal Slurry Pumps.(Dept.M)

2021 ◽  
Vol 10 (1) ◽  
pp. 106-120
Author(s):  
W. Wiedenroth ◽  
Magdy Mohamed Abou Rayan ◽  
N. Gadelhak
Keyword(s):  
Author(s):  
Mario Schinnerl ◽  
Jan Ehrhard ◽  
Mathias Bogner ◽  
Joerg Seume

The measured performance maps of turbochargers which are commonly used for the matching process with a combustion engine are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to mid speeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called ‘thermo-mechanical’ turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional heat transfer model, non-dimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different turbochargers was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermo-mechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fangcheng Xu ◽  
Zeda Dong ◽  
Jianhua Chu ◽  
Haoming Wang ◽  
Yongliang Wang

Purpose Gas thrust foil bearings (GTFBs) are used to balance the axial load of engines. However, in some working conditions of large axial force, such as the use of single impeller air compressor, the load capacity of GTFBs is still insufficient. To solve this problem, the load capacity can be improved by increasing the stiffness of bump foil. The purpose of this paper is to explore a scheme to effectively improve the performance of thrust foil bearings. In the paper, the stiffness of bump foil is improved by increasing the thickness of bump foil and using double-layer bump foil. Design/methodology/approach The foil deformation of GTFBs supported by three different types of bump foils, the relationship between friction power consumption and external force and the difference of limited load capacity were measured by experimental method. Findings The variation of the foil deformation, bearing stiffness, friction power consumption with the external force at different speeds and limited load capacity are obtained. Based on experimental results, the selection scheme of bump foil thickness is obtained. Originality/value This paper provides a feasible method for the performance optimization of GTFBs.


Author(s):  
ZeDa Dong ◽  
Cheng Cheng ◽  
Fangcheng Xu

Abstract In this paper, the mathematical model of herringbone grooved aerodynamic foil bearings is established, and the finite difference method is used to obtain the discretized form of Reynolds equation. The static characteristics of bearings, such as film pressure, film temperature, are obtained by solving the Reynolds equation and energy equation. The bearing load capacity and friction power consumption are obtained by calculating the film thickness and film pressure distribution in the bearing gap. The influence of the bearing operational parameters, such as eccentricity and rotation speed, and the bearing structural parameters, such as groove width, groove depth ratio, groove number and helix angle, on the bearing load capacity and friction power consumption of bearings are analyzed. The methods of improving bearing load capacity and reducing friction power consumption are obtained. Simultaneously, by comparing the bearing load capacity and friction power consumption of herringbone grooved gas foil bearings and gas foil bearings (GFBs) without herringbone grooves, the influence of herringbone grooves on the bearing performance is obtained.


Author(s):  
Shuyun Jiang ◽  
Yujiang Qiu

This technical note aims to reduce friction power loss of flywheel energy storage system (FESS) supported by hydrodynamic spiral groove bearing and permanent magnetic bearing (PMB). An approach is proposed to fabricate the spiral groove bearing using polytetrafluoroethylene (PTFE) composite. A test rig is developed to test tribological properties of the spiral groove PTFE bearings. Also, two PTFE composites (C-PTFE: 80 vol.% PTFE filled with 20 vol.% graphite; C-Cu-PTFE 50 vol.% PTFE filled with 20 vol.% graphite and 30 vol.% copper powder) are tested. Results show that the friction power losses of the C-PTFE and C-Cu-PTFE bearings are lower than that of the traditional albronze (CuAl) bearing in the whole speed range. In addition, the spiral groove PTFE bearings show an excellent friction-reducing property under boundary or mixed lubrication condition. Finally, a case study is given to show the spiral groove PTFE bearing is capable of reducing the friction power loss of the FESS.


Author(s):  
Zhenpeng Wu ◽  
Vanliem Nguyen ◽  
Vanquynh Le ◽  
Xuanlong Le ◽  
Vancuong Bui

The study proposes a design and optimization of textures on the surface of crankpin bearing to improve the lubrication efficiency and friction power loss (LE-FPL). A hydrodynamic lubrication model of crankpin bearing considering the impact of the external dynamic load and micro asperity contact is established. Based on the established model, the lubrication textures designed on the bearing surface are then simulated and optimized through the algorithms developed in Matlab environment and multi-objective optimization method. Increasing the oil film pressure and reducing the contact force ( Wac) in the asperity contact region, friction force ( Ff), and friction coefficient ( µ) of crankpin bearing are the objective functions to evaluate the LE-FPL. The study results indicate that the lubrication textures designed on the bearing surface have an obvious effect on improving the LE-FPL. Especially, with the optimized textures, the maximum oil film pressure is greatly increased by 44.8% while the maximum values of Wac and Ff are significantly reduced by 22% and 25%. Consequently, the lubrication textures added on the surface of crankpin bearing can greatly improve the LE-FPL.


2017 ◽  
Vol 9 (12) ◽  
pp. 168781401774409 ◽  
Author(s):  
Aleksander Yevtushenko ◽  
Michal Kuciej ◽  
Katarzyna Topczewska

Sign in / Sign up

Export Citation Format

Share Document