scholarly journals A New Intrusion Detection Strategy Based on Combined Feature Selection Methodology and Machine Learning Technique. (Dept. E)

2021 ◽  
Vol 46 (4) ◽  
pp. 27-35
Author(s):  
Shereen Ali
2021 ◽  
Vol 35 (6) ◽  
pp. 477-482
Author(s):  
Daneshwari Ashok Noola ◽  
Dayananda Rangapura Basavaraju

Crop diseases constitute a substantial threat to food safety but, due to the lack of a critical basis, their rapid identification in many parts of the world is challenging. The development of accurate techniques in the field of image categorization based on leaves produced excellent results. Plant phenotyping for plant growth monitoring is an important aspect of plant characterization. Early detection of leaf diseases is crucial for efficient crop output in agriculture. Pests and diseases cause crop harm or destruction of a section of the plant, leading to lower food productivity. In addition, in a number of less-developed countries, awareness of pesticide management and control, as well as diseases, is limited. Some of the main reasons for decreasing food production are toxic diseases, poor disease control and extreme climate changes. The quality of farm crops may be influenced by bacterial spot, late blight, septoria and curved yellow leaf diseases. Because of automatic leaf disease classification systems, action is easy after leaf disease signs are detected. Applying image processing and machine learning methodologies, this research offers an efficient Spot Tagging Leaf Disease Detection with Pertinent Feature Selection Model using Machine Learning Technique (SPLDPFS-MLT). Different diseases deplete chlorophyll in leaves generating dark patches on the surface of the leaf. Machine learning algorithms can be used to identify image pre-processing, image segmentation, feature extraction and classification. Compared with traditional models, the proposed model shows that the model performance is better than those existing.


2019 ◽  
Vol 9 (14) ◽  
pp. 2921 ◽  
Author(s):  
Siti Nurmaini ◽  
Radiyati Umi Partan ◽  
Wahyu Caesarendra ◽  
Tresna Dewi ◽  
Muhammad Naufal Rahmatullah ◽  
...  

An automated classification system based on a Deep Learning (DL) technique for Cardiac Disease (CD) monitoring and detection is proposed in this paper. The proposed DL architecture is divided into Deep Auto-Encoders (DAEs) as an unsupervised form of feature learning and Deep Neural Networks (DNNs) as a classifier. The objective of this study is to improve on the previous machine learning technique that consists of several data processing steps such as feature extraction and feature selection or feature reduction. It is also noticed that the previously used machine learning technique required human interference and expertise in determining robust features, yet was time-consuming in the labeling and data processing steps. In contrast, DL enables an embedded feature extraction and feature selection in DAEs pre-training and DNNs fine-tuning process directly from raw data. Hence, DAEs is able to extract high-level of features not only from the training data but also from unseen data. The proposed model uses 10 classes of imbalanced data from ECG signals. Since it is related to the cardiac region, abnormality is usually considered for an early diagnosis of CD. In order to validate the result, the proposed model is compared with the shallow models and DL approaches. Results found that the proposed method achieved a promising performance with 99.73% accuracy, 91.20% sensitivity, 93.60% precision, 99.80% specificity, and a 91.80% F1-Score. Moreover, both the Receiver Operating Characteristic (ROC) curve and the Precision-Recall (PR) curve from the confusion matrix showed that the developed model is a good classifier. The developed model based on unsupervised feature extraction and deep neural network is ready to be used on a large population before its installation for clinical usage.


Author(s):  
Keshav Sinha

During this time, COVID-19 has affected the lifestyles of many individuals; in the meantime, an enormous amount of users are connected with the internet. This will also increase the chance of network intrusion due to congestion and overloading of the server. So, to cope with this problem, the authors proposed an automated intrusion detection system (IDS) which helps in monitoring the traffic and service request. The model is used to identify the illegal access and counterparts with static checking capabilities of the firewall. The classical KDDCup 99 dataset is used for training and testing purposes.


Sign in / Sign up

Export Citation Format

Share Document