scholarly journals Solution of the simplified tumor-immune system using combined LaPlace transform-adomian decomposition method

2019 ◽  
Vol 40 (1) ◽  
pp. 1-9
Author(s):  
A. A. Hemeda ◽  
M. A. Abdeen
Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668653 ◽  
Author(s):  
Hassan Eltayeb Gadain ◽  
Imed Bachar

In this article, the double Laplace transform and Adomian decomposition method are used to solve the nonlinear singular one-dimensional parabolic equation. In addition, we studied the convergence analysis of our problem. Using two examples, our proposed method is illustrated and the obtained results are confirmed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hassan Eltayeb ◽  
Said Mesloub

In this work, we combine conformable double Laplace transform and Adomian decomposition method and present a new approach for solving singular one-dimensional conformable pseudoparabolic equation and conformable coupled pseudoparabolic equation. Furthermore, some examples are given to show the performance of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fang Chen ◽  
Qing-Quan Liu

The classical Adomian decomposition method (ADM) is implemented to solve a model of HIV infection of CD4+T cells. The results indicate that the approximate solution by using the ADM is the same as that by using the Laplace ADM, but it can be obtained in a more efficient way. We also use Padé approximation and Laplace transform as a posttreatment technique to obtain the result of the ADM. The advantage of the posttreatment is illustrated by numerical experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fatemah Mofarreh ◽  
A. M. Zidan ◽  
Muhammad Naeem ◽  
Rasool Shah ◽  
Roman Ullah ◽  
...  

This paper investigates a modified analytical method called the Adomian decomposition transform method for solving fractional-order heat equations with the help of the Caputo-Fabrizio operator. The Laplace transform and the Adomian decomposition method are implemented to obtain the result of the given models. The validity of the proposed method is verified by considering some numerical problems. The solution achieved has shown that the better accuracy of the suggested method. Furthermore, due to the straightforward implementation, the proposed method can solve other nonlinear fractional-order problems.


2020 ◽  
Vol 2 (2) ◽  
pp. 173
Author(s):  
Wahidah Sanusi ◽  
Syafruddin Side ◽  
Beby Fitriani

Abstrak. Penelitian ini mengkaji terbentuknya persamaan Transport dan menerapkan metode Dekomposisi Adomian Laplace dalam menentukan solusi persamaan Transport. Persamaan transport merupakan salah satu bentuk dari persamaan diferensial parsial. Bentuk umum persamaan Transport yaitu: Metode Dekomposisi Adomian Laplace merupakan kombinasi antara dua metode yaitu  metode dekomposisi adomian dan transformasi laplace. Penyelesaian persamaan Transport dengan metode Dekomposisi Adomian Laplace dilakukan dengan cara menggunakan tranformasi Laplace, mensubstitusi nilai awal, menyatakan solusi dalam bentuk deret tak hingga dan menggunakan invers transformasi laplace . Metode ini juga merupakan metode semi analitik untuk menyelesaikan persamaan diferensial nonlinier. Berdasarkan hasil perhitungan, metode dekomposisi Adomian Laplace dapat menghampiri penyelesaian persamaan diferensial biasa nonlinear.Kata Kunci: Metode Dekomposisi Adomian Laplace, Persamaan Diferensial Parsial, Persamaan Transport.This research discusses the solving of Transport equation applying Laplace Adomian Decomposition Method. Transport equation is one form of partial differential equations. General form of Transport equation is: Laplace Adomian Decomposition Method that combine between Laplace transform and Adomian Decomposition Method. The steps used to solve Transport equation are applying Laplace transform, initial value substitution, defining a solution as infinite series, then using the inverse Laplace transform. This method is a semi analytical method to solve for nonlinear ordinary differential equation. Based on the calculation results, the Laplace Adomian decomposition method can solve the solution of nonlinear ordinary differential equation.Keywords: Laplace Adomian Decomposition Method, Partial Differential Equation, Transport Equation.


2022 ◽  
Vol 7 (2) ◽  
pp. 2878-2890
Author(s):  
Amjad Ali ◽  
◽  
Iyad Suwan ◽  
Thabet Abdeljawad ◽  
Abdullah ◽  
...  

<abstract><p>In the present work, the authors developed the scheme for time Fractional Partial Diffusion Differential Equation (FPDDE). The considered class of FPDDE describes the flow of fluid from the higher density region to the region of lower density, macroscopically it is associated with the gradient of concentration. FPDDE is used in different branches of science for the modeling and better description of those processes that involve flow of substances. The authors introduced the novel concept of fractional derivatives in term of both time and space independent variables in the proposed FPDDE. We provided the approximate solution for the underlying generalized non-linear time PFDDE in the sense of Caputo differential operator via Laplace transform combined with Adomian decomposition method known as Laplace Adomian Decomposition Method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by aforementioned techniques. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate technique to handle nonlinear partial differential equations as compared to the other available numerical techniques. At the end of this paper, the obtained numerical solution is visualized graphically by Matlab to describe the dynamics of desired solution.</p></abstract>


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sabir Widatalla ◽  
Mohammed Abdulai Koroma

We show how to adapt an efficient numerical algorithm to obtain an approximate solution of a system of pantograph equations. This algorithm is based on a combination of Laplace transform and Adomian decomposition method. Numerical examples reveal that the method is quite accurate and efficient, it approximates the solution to a very high degree of accuracy after a few iterates.


Sign in / Sign up

Export Citation Format

Share Document