scholarly journals Numerical simulation of time partial fractional diffusion model by Laplace transform

2022 ◽  
Vol 7 (2) ◽  
pp. 2878-2890
Author(s):  
Amjad Ali ◽  
◽  
Iyad Suwan ◽  
Thabet Abdeljawad ◽  
Abdullah ◽  
...  

<abstract><p>In the present work, the authors developed the scheme for time Fractional Partial Diffusion Differential Equation (FPDDE). The considered class of FPDDE describes the flow of fluid from the higher density region to the region of lower density, macroscopically it is associated with the gradient of concentration. FPDDE is used in different branches of science for the modeling and better description of those processes that involve flow of substances. The authors introduced the novel concept of fractional derivatives in term of both time and space independent variables in the proposed FPDDE. We provided the approximate solution for the underlying generalized non-linear time PFDDE in the sense of Caputo differential operator via Laplace transform combined with Adomian decomposition method known as Laplace Adomian Decomposition Method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by aforementioned techniques. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate technique to handle nonlinear partial differential equations as compared to the other available numerical techniques. At the end of this paper, the obtained numerical solution is visualized graphically by Matlab to describe the dynamics of desired solution.</p></abstract>


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.



2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668653 ◽  
Author(s):  
Hassan Eltayeb Gadain ◽  
Imed Bachar

In this article, the double Laplace transform and Adomian decomposition method are used to solve the nonlinear singular one-dimensional parabolic equation. In addition, we studied the convergence analysis of our problem. Using two examples, our proposed method is illustrated and the obtained results are confirmed.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hassan Eltayeb ◽  
Said Mesloub

In this work, we combine conformable double Laplace transform and Adomian decomposition method and present a new approach for solving singular one-dimensional conformable pseudoparabolic equation and conformable coupled pseudoparabolic equation. Furthermore, some examples are given to show the performance of the proposed method.



2018 ◽  
Vol 1 (2) ◽  
pp. 9-31
Author(s):  
Attaullah

In this paper, Laplace Adomian decomposition method (LADM) is applied to solve linear and nonlinear partial differential equations (PDEs). With the help of proposed method, we handle the approximated analytical solutions to some interesting classes of PDEs including nonlinear evolution equations, Cauchy reaction-diffusion equations and the Klien-Gordon equations.



2020 ◽  
Vol 2 (2) ◽  
pp. 173
Author(s):  
Wahidah Sanusi ◽  
Syafruddin Side ◽  
Beby Fitriani

Abstrak. Penelitian ini mengkaji terbentuknya persamaan Transport dan menerapkan metode Dekomposisi Adomian Laplace dalam menentukan solusi persamaan Transport. Persamaan transport merupakan salah satu bentuk dari persamaan diferensial parsial. Bentuk umum persamaan Transport yaitu: Metode Dekomposisi Adomian Laplace merupakan kombinasi antara dua metode yaitu  metode dekomposisi adomian dan transformasi laplace. Penyelesaian persamaan Transport dengan metode Dekomposisi Adomian Laplace dilakukan dengan cara menggunakan tranformasi Laplace, mensubstitusi nilai awal, menyatakan solusi dalam bentuk deret tak hingga dan menggunakan invers transformasi laplace . Metode ini juga merupakan metode semi analitik untuk menyelesaikan persamaan diferensial nonlinier. Berdasarkan hasil perhitungan, metode dekomposisi Adomian Laplace dapat menghampiri penyelesaian persamaan diferensial biasa nonlinear.Kata Kunci: Metode Dekomposisi Adomian Laplace, Persamaan Diferensial Parsial, Persamaan Transport.This research discusses the solving of Transport equation applying Laplace Adomian Decomposition Method. Transport equation is one form of partial differential equations. General form of Transport equation is: Laplace Adomian Decomposition Method that combine between Laplace transform and Adomian Decomposition Method. The steps used to solve Transport equation are applying Laplace transform, initial value substitution, defining a solution as infinite series, then using the inverse Laplace transform. This method is a semi analytical method to solve for nonlinear ordinary differential equation. Based on the calculation results, the Laplace Adomian decomposition method can solve the solution of nonlinear ordinary differential equation.Keywords: Laplace Adomian Decomposition Method, Partial Differential Equation, Transport Equation.



2021 ◽  
Author(s):  
Tarig M. Elzaki ◽  
Shams E. Ahmed

This chapter is fundamentally centering on the application of the Adomian decomposition method and Sumudu transform for solving the nonlinear partial differential equations. It has instituted some theorems, definitions, and properties of Adomian decomposition and Sumudu transform. This chapter is an elegant combination of the Adomian decomposition method and Sumudu transform. Consequently, it provides the solution in the form of convergent series, then, it is applied to solve nonlinear partial differential equations.



2021 ◽  
Vol 20 ◽  
pp. 712-716
Author(s):  
Zainab Mohammed Alwan

In this survey, viewed integral transformation (IT) combined with Adomian decomposition method (ADM) as ZMA- transform (ZMAT) coupled with (ADM) in which said ZMA decomposition method has been utilized to solve nonlinear partial differential equations (NPDE's).This work is very useful for finding the exact solution of (NPDE's) and this result is more accurate obtained with compared the exact solution obtained in the literature.



2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Norhasimah Mahiddin ◽  
S. A. Hashim Ali

The modified decomposition method (MDM) and homotopy perturbation method (HPM) are applied to obtain the approximate solution of the nonlinear model of tumour invasion and metastasis. The study highlights the significant features of the employed methods and their ability to handle nonlinear partial differential equations. The methods do not need linearization and weak nonlinearity assumptions. Although the main difference between MDM and Adomian decomposition method (ADM) is a slight variation in the definition of the initial condition, modification eliminates massive computation work. The approximate analytical solution obtained by MDM logically contains the solution obtained by HPM. It shows that HPM does not involve the Adomian polynomials when dealing with nonlinear problems.



2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fang Chen ◽  
Qing-Quan Liu

The classical Adomian decomposition method (ADM) is implemented to solve a model of HIV infection of CD4+T cells. The results indicate that the approximate solution by using the ADM is the same as that by using the Laplace ADM, but it can be obtained in a more efficient way. We also use Padé approximation and Laplace transform as a posttreatment technique to obtain the result of the ADM. The advantage of the posttreatment is illustrated by numerical experiments.



Sign in / Sign up

Export Citation Format

Share Document