scholarly journals Effect of Insect Infestation by Macrosiphum rosae L. on the Vase Live Period of Rose Flowers under Greenhouse Conditions

Author(s):  
Emam S ◽  
Faragalla H.
2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2018 ◽  
Vol 1 (3) ◽  
pp. 176-181 ◽  
Author(s):  
E. Tettey

Under-fermentation of cocoa beans produces purple beans. The fermentation period is 6 to 7 days but some cocoa farmersunder-ferment their cocoa beans leading to the development of purple cocoa beans. This study determined the impact of insectinfestation on stored purple cocoa beans. Wet cocoa beans were fermented for 1, 2, 3, 4 and 5 days to produce the purple beans.Ephestia cautella and Tribolium castaneum, both singly and in combination, were introduced into the cocoa beans and storedfor different (30, 60, 90 and 120 days) period. Insect population, percentage weight loss and the contaminants produced bythese insects were determined. Cocoa beans infested with E. cautella alone had the highest population of 297.0 ± 22.7. Beansfermented for 3 days had the lowest insect population both singly and in combination after 120 days of storage. The highestpercentage weight loss was recorded in cocoa beans fermented for one day (10.1 ± 1.87%) and 4 days (10.1 ± 8.74%). T.castaneum did not cause much damage to the cocoa beans but E. cautella alone caused significant damage to stored cocoabeans. Insect infestation and poor fermentation contribute significantly to the reduction in quality of cocoa beans.


2000 ◽  
Vol 151 (11) ◽  
pp. 417-424 ◽  
Author(s):  
Ernst Zürcher

Ancient forest utilization regulations regarding felling dates and wood use are compared to the moon cycles. Furthermore, moon-phase related investigations with regard to germination behaviour, insect infestation and durability of the wood are presented.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 526d-526
Author(s):  
M. Freeman ◽  
C. Walters ◽  
M.A. Thorpe ◽  
T. Gradziel

Almond, as with other stone fruit, possesses a highly lignified endocarp or shell. The dominant hard-shelled trait (D-) is positively associated with greater resistant to insect infestation than nuts expressing the paper-shelled (dd) trait. Hard-shelled genotypes have undesirable effects, including a lower kernel meat-to-nut crack-out ratio, greater kernel damage during mechanical shelling, and a reduction in plant energy available to kernel development. Histogenic analysis shows that the almond endocarp, unlike peach, has a tri-partite structure. Insect feeding studies have subsequently demonstrated that the inner endocarp layer, which is similar in both hard and paper-shelled types, is the most important structural barrier to insect infestation. Shell-seal integrity and X-ray studies have confirmed that discontinuities at the inner endocarp suture seal are the primary, though not the sole site of entry for insect pests. Paper-shelled almond selections with highly lignified and well-sealed inner endocarps show resistance levels comparable to hard shelled types but with crack-out ratios 30% to 40% higher. Pseudo-paper-shelled types have also been selected, in which a highly lignified outer endocarp is formed, but is retained by the fruit hull at dehiscence. An understanding of endocarp morphology and development is thus important in breeding for insect resistance as well as the commercial utilization of both kernel and hull.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 702
Author(s):  
Anastasios I. Darras ◽  
Panagiotis J. Skouras ◽  
Panagiotis Assimomitis ◽  
Chara Labropoulou ◽  
George J. Stathas

UV-C irradiation is known to enhance plant resistance against insect pests. In the present study, we evaluated the effects of low doses of UV-C on Macrosiphum rosae infesting greenhouse rose (Rosa x hybrida) plants. The application of 2.5-kJ/m2 UV-C irradiation on rose leaves before infestation induced anti-herbivore resistance and negatively affected the aphid fecundity. No eggs and first instar nymphs were recorded on irradiated leaves, whereas an average of 4.3 and 2.7 eggs and 6.7 and 14 first instars were recorded on vars. “Etoile Brilante” and “Arlen Francis” untreated leaves, respectively. UV-C irradiation reduced the aphid population from naturally infested rose plants by up to 58%. In a greenhouse pot trial (GPT) in 2019, UV-C irradiation minimised the initial aphid population six hours after treatment. UV-C elicited host resistance and, also, helped in aphid repulsion without killing the adult individuals. UV-C did not affect the physiological responses of rose plants. The net CO2 assimilation of the UV-C irradiated plants ranged between 10.55 and 15.21 μmol/m2. sec for “Arlen Francis” and between 10.51 and 13.75 μmol/m2. sec for “Etoile Brilante” plants. These values, with only a few exceptions, were similar to those recorded to the untreated plants.


2015 ◽  
Vol 207 (1) ◽  
pp. 148-158 ◽  
Author(s):  
Geun Cheol Song ◽  
Soohyun Lee ◽  
Jaehwa Hong ◽  
Hye Kyung Choi ◽  
Gun Hyong Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document