scholarly journals Practical investigation for road lighting using renewable energy sources "Sizing and modelling of solar/wind hybrid system for road lighting application"

2017 ◽  
Vol 3 (3) ◽  
pp. 258
Author(s):  
Maged A. Abu Adma ◽  
Said S. Elmasry ◽  
Maram Hani Shafiek Ahmed ◽  
Ahmed Ghitas
2014 ◽  
pp. 13-17
Author(s):  
Zoltán Balla

The renewable energy sources could be used in energy production, while no or only very slightly emit harmful substances to the environment. The solar, wind, hydropower, biomass and heat rational utilization of land contributes to greenhouse gas emissions.Renewable energy sources also reduces the dependence on fossil fuels, thus contributing to increase security of supply. The creation of local jobs to strengthen the area's population retaining ability.


Author(s):  
Marwa Mallek ◽  
Jalel Euchi ◽  
Yacin Jerbi

Hybrid energy systems (HESs) are an excellent solution for electrification of remote rural areas where the grid extension is difficult or not economical. Usually, HES generally integrate one or several renewable energy sources such as solar, wind, hydropower, and geothermal with fossil fuel powered diesel/petrol generator to provide electric power where the electricity is either fed directly into the grid or to batteries for energy storage. This chapter presents a review on the solution approaches for determining the HES systems based on various objective functions (e.g. economic, social, technical, environmental and health impact). In order to take account of environmental and health impacts from energy systems, several energy optimization model was developed for minimizing pollution and maximizing the production of renewable energy.


2011 ◽  
Vol 374-377 ◽  
pp. 137-140
Author(s):  
Hua Zhang ◽  
Hui Zhang

The hybrid system of solar energy and geothermal heat pump (GHP) can put the advantages of the two renewable energy sources together and make up the deficiencies of each other. The concept and the development of the hybrid system are introduced; the work principle and the operational mode of the system are analyzed. Through the introduction of two instances, this paper analyzes the way of the system in buildings and the saving potential applying the hybrid system.


2018 ◽  
pp. 64-73
Author(s):  
Ivan Bachev ◽  
Boris Demirkov ◽  
Ludmil Stoyanov ◽  
Vladimir Lazarov ◽  
Zahari Zarkov ◽  
...  

The purpose of this work is to assess the energies produced by a hybrid system composed of photovoltaic generators and wind turbines. This study aims to develop a method, which could facilitate the sizing of photovoltaic and wind generators in a given hybrid system. The proposed method could also help with the sizing of storage devices in the hybrid system, which provide energy for the consumer in moments when the primary renewable energy source is lacking or for sizing the energy exchange with the grid.


Author(s):  
Amit Kishanpuri ◽  
A.K. Sharma

There are many type power plant in India such as Thermal power plant, hydel power plant ,nuclear power plant , solar power plant and wind power plant . In this paper, we are presentedthe renewable energy sources in order to meet an energetic demand in India with a lowestcost. These are beneficial the renewable energy sources like solar, wind, etc. This studyfocuses on making use renewable sources as an alternative source of energy. Renewableenergy sources like solar, wind and renewable energy due to its availability, continuity andcleanness.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 283 ◽  
Author(s):  
M Rathaiah ◽  
P Ram Kishore Kumar Reddy ◽  
P Sujatha

Renewable Energy Resources plays an active role in standing against   global warming and reduce the use of conventional energy sources. Hybrid systems formed by combining the renewable energy sources are efficient relatively. The intent of this paper is to furnish endurable power for frontier and far-off places with hybrid-system of architecture. The intended system embodying DFIG and solar PV based wind turbine. In solar systems, control mechanism is essential for improving the performance. This paper proposes a method of incremental conductance approach based MPPT Adaptive Fuzzy Logic Controller for grid connected PV system which is composed of a boost converter and a three phase inverter. Adaptive Fuzzy Logic Controller provides fast response and better %THD compared to Fuzzy and PI controllers. In solar system, MPPT will magnify solar output power value. The DFIG has two controllers Grid-Side Control (GSC) and Rotor-Side Control (RSC). The rated rotor speed and DC-link voltage are regulated by RSC and GSC through PI, Fuzzy Logic Controller and AFLC strategies. By using simulation studies performed by three control strategies, %THD analysis is carried out.  


Author(s):  
Marwa Mallek ◽  
Jalel Euchi ◽  
Yacin Jerbi

Hybrid energy systems (HESs) are an excellent solution for electrification of remote rural areas where the grid extension is difficult or not economical. Usually, HES generally integrate one or several renewable energy sources such as solar, wind, hydropower, and geothermal with fossil fuel powered diesel/petrol generator to provide electric power where the electricity is either fed directly into the grid or to batteries for energy storage. This chapter presents a review on the solution approaches for determining the HES systems based on various objective functions (e.g. economic, social, technical, environmental and health impact). In order to take account of environmental and health impacts from energy systems, several energy optimization model was developed for minimizing pollution and maximizing the production of renewable energy.


2019 ◽  
Vol 5 (9) ◽  
pp. 12-20
Author(s):  
Megha . ◽  
Ranjeeta Khare

The hybrid renewable energy system (HRES) is a combination of renewable and conventional energy sources. It can also combine two or more renewable energy sources operating in standalone mode or in network mode. In this work two models have been created in with we have proposed a model of hybrid system in which inverter is controlled by a designed internal current loop controller and wind variations are adjusted using a algorithm. It was found to be that the proposed system gives 1150 VA output which is considerably more than the 1000VA output of the system with basic voltage control. The efficiency is enhanced from 68 % to 70%.  The system cost was found to be 70483.53 units in the system having basic voltage control and with the internal current loop control, it was reduced to 66795.26 units. Thus it can be drawn from this work that while designing an inverter control strategy the proposed internal current loop control can serve the purpose with better results in terms of power, efficiency and system cost.


Sign in / Sign up

Export Citation Format

Share Document