scholarly journals Brown bullhead Ameiurus nebulosus — new fish species for Russia

2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Igor Popov ◽  
Anna Kotova

The native habitat of the brown bullhead Ameiurus nebulosus is located in the eastern part of North America. This species was introduced in Europe, Southwestern Asia and New Zealand. It was supposed that it entered Russia from the southwest and now inhabits some water bodies at the border with Ukraine and Belarus. Information about bullheads in Russia was searched for in scientific editions and angler’s blogs. Anglers’ reports have been verified by survey and fishing. It turned out that brown bullheads did in fact appear in Russia, but not where they were expected: they were found by the city of Saint Petersburg on the Karelian Isthmus, i.e., on the territory between Lake Ladoga and the Gulf of Finland of the Baltic Sea. They inhabit at least three lakes. This invasion resulted from release by unauthorized individuals. The revealed habitats are linked by brooks with the river systems of the Baltic Sea Basin. The following spread of the brown bullhead is possible due to intentional releases and natural processes.

Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


2003 ◽  
pp. 50-61 ◽  
Author(s):  
V. A. Smagin ◽  
M. G. Napreenko

The paper characterizes the 3 associations comprising plant communities with Sphagnum rubellum in the south-eastern part of the Baltic region. The new syntaxa differ from each other both in their floristic characters and the pronounced affinity to definite regional mire types and particular habitats. The ass. Drosero-Sphagnetum rubelli is typical of the relatively most thorough ranges. It is observed from the Kaliningrad region to the Karelian Isthmus and, according to the published reference, occurs even throughout the whole area around the Baltic Sea. Its most typical habitat is that of margins of mire lakes and pools. The ass. Eriophoro-Sphagnetum rubelli occurs in central plateaus of convex plateau-like bogs, typical of the areas adjacent to the Baltic Sea coast. It occupies extended flat mire ecotopes with the water level 0.2–0.25 m deep. The ass. Empetro-Sphagnetum rubelli is characteristic of the retrogressive complex in the convex bogs of the East-Baltic Province. It is mostly observed along the coast of the Gulf of Finland. Its stands are rather dynamic and unstable in both space and time. The presence of communities comprised by these 3 associations is an important vegetation character of the series of regional mire types. Assuming an association level of the respective syntaxa seems rational for the purposes of adequate reflection of plant cover diversity.


Hereditas ◽  
2010 ◽  
Vol 147 (5) ◽  
pp. 205-214 ◽  
Author(s):  
Marjatta Säisä ◽  
Matti Salminen ◽  
Marja-Liisa Koljonen ◽  
Jukka Ruuhijärvi

Author(s):  
Silvija Ozola

The port city Liepaja had gained recognition in Europe and the world by World War I. On the coast of the Baltic Sea a resort developed, to which around 1880 a wide promenade – Kurhaus Avenue provided a functional link between the finance and trade centre in Old Liepaja. On November 8, 1890 the building conditions for Liepaja, developed according to the sample of Riga building regulations, were partly confirmed: the construction territory was divided into districts of wooden and stone buildings. In 1888 after the reconstruction of the trade canal Liepaja became the third most significant port in the Russian Empire. The railway (engineer Gavriil Semikolenov; 1879) and metal bridges (engineers Huten and Ruktesel; 1881) across the trade canal provided the link between Old Liepaja and the industrial territory in New Liepaja, where industrial companies and building of houses developed in the neighbourhood of the railway hub, but in spring 1899 the construction of a ten-kilometre long street electric railway line and power station was commenced. Since September 25 the tram movement provided a regular traffic between Naval Port (Latvian: Karosta), the residential and industrial districts in New Liepaja and the city centre in Old Liepaja. In 1907 the construction of the ambitious “Emperor Alexander’s III Military Port” and maritime fortress was completed, but already in the following year the fortress was closed. In the new military port there were based not only the navy squadrons of the Baltic Sea, but also the Pacific Ocean before sending them off in the war against Japan. The development of Liepaja continued: promenades, surrounded by Dutch linden trees, joined squares and parks in one united plantation system. On September 20, 1910 Liepaja City Council made a decision to close the New Market and start modernization of the city centre. In 1911 Liepaja obtained its symbol – the Rose Square. In the independent Republic of Latvia the implementation of the agrarian reform was started and the task to provide inhabitants with flats was set. Around 1927 in the Technical Department of Liepaja City the development of the master-plan was started: the territory of the city was divided into the industrial, commercial, residential and resort zone, which was greened. It was planned to lengthen Lord’s (Latvian: Kungu) Street with a dam, partly filling up Lake Liepaja in order to build the water-main and provide traffic with the eastern bank. The passed “Law of City Lands” and “Regulations for City Construction and Development of Construction Plans and Development Procedure” in Latvia Republic in 1928 promoted a gradual development of cities. In 1932 Liepaja received the radio transmitter. On the northern outskirts a sugar factory was built (architect Kārlis Bikše; 1933). The construction of the city centre was supplemented with the Latvian Society House (architect Kārlis Blauss and Valdis Zebauers; 1934-1935) and Army Economical Shop (architect Aleksandrs Racenis), as well as the building of a pawnshop and saving bank (architect Valdis Zebauers; 1936-1937). The hotel “Pēterpils”, which became the property of the municipality in 1936, was renamed as the “City Hotel” and it was rebuilt in 1938. In New Liepaja the Friendly Appeal Elementary school was built (architect Karlis Bikše), but in the Naval Officers Meeting House was restored and it was adapted for the needs of the Red Cross Bone Tuberculosis Sanatorium (architect Aleksandrs Klinklāvs; 1930-1939). The Soviet military power was restored in Latvia and it was included in the Union of Soviet Socialist Republics. During the World War II buildings in the city centre around the Rose Square and Great (Latvian: Lielā) Street were razed. When the war finished, the “Building Complex Scheme for 1946-1950” was developed for Liepaja. In August 1950 the city was announced as closed: the trade port was adapted to military needs. Neglecting the historical planning of the city, in 1952 the restoration of the city centre building was started, applying standard projects. The restoration of Liepaja City centre building carried out during the post-war period has not been studied. Research goal: analyse restoration proposals for Liepaja City centre building, destroyed during World War II, and the conception appropriate to the socialism ideology and further development of construction.


2011 ◽  
Vol 11 (19) ◽  
pp. 10057-10069 ◽  
Author(s):  
J. Bartnicki ◽  
V. S. Semeena ◽  
H. Fagerli

Abstract. The EMEP/MSC-W model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 yr: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13 %. This value corresponds well with the total nitrogen emission reduction (11 %) in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen deposition to the Baltic Sea basin is relatively large, ranging from −13 % to +17 % of the averaged value. It is mainly caused by the changing meteorological conditions and especially precipitation in the considered period. The calculated monthly deposition pattern is similar for most of the years showing maxima in the autumn months October and November. The source allocation budget for atmospheric nitrogen deposition to the Baltic Sea basin was calculated for each year of the period 1997–2006. The main emission sources contributing to total nitrogen deposition are: Germany 18–22 %, Poland 11–13 % and Denmark 8–11 %. There is also a significant contribution from distant sources like the United Kingdom 6–9 %, as well as from the international ship traffic on the Baltic Sea 4–5 %.


2014 ◽  
Vol 14 (2) ◽  
pp. 2021-2042 ◽  
Author(s):  
I. Ialongo ◽  
J. Hakkarainen ◽  
N. Hyttinen ◽  
J.-P. Jalkanen ◽  
L. Johansson ◽  
...  

Abstract. Satellite-based data are very important for air quality applications in the Baltic Sea area, because they provide information on air pollution over sea and there where ground-based network and aircraft measurements are not available. Both the emissions from urban sites over land and ships over sea, contribute to the tropospheric NO2 levels. The tropospheric NO2 monitoring at high latitudes using satellite data is challenging because of the reduced light hours in winter and the snow-covered surface, which make the retrieval complex, and because of the reduced signal due to low Sun. This work presents a detailed characterization of the tropospheric NO2 columns focused on part of the Baltic Sea region using the Ozone Monitoring Instrument (OMI) tropospheric NO2 standard product. Previous works have focused on larger seas and lower latitudes. The results showed that, despite the regional area of interest, it is possible to distinguish the signal from the main coastal cities and from the ships by averaging the data over a seasonal time range. The summertime NO2 emission and lifetime values (E = (1.0 ± 0.1) × 1028 molec. and τ = (3.0 ± 0.5) h, respectively) in Helsinki were estimated from the decay of the signal with distance from the city center. The method developed for megacities was successfully applied to a smaller scale source, in both size and intensity (i.e., the city of Helsinki), which is located at high latitudes (∼60° N). The same methodology could be applied to similar scale cities elsewhere, as far as they are relatively isolated from other sources. The transport by the wind plays an important role in the Baltic Sea area. The NO2 spatial distribution is mainly determined by the contribution of strong westerly winds, which dominate the wind patterns during summer. The comparison between the emissions from model calculations and OMI NO2 tropospheric columns confirmed the applicability of satellite data for ship emission monitoring. In particular, both the emission data and the OMI observations showed similar year-to-year variability, with a drop in year 2009, corresponding to the effect of the economical crisis.


Sign in / Sign up

Export Citation Format

Share Document