Simulating residential indoor water demand by means of a probability based end-use model

2014 ◽  
Vol 63 (6) ◽  
pp. 476-488 ◽  
Author(s):  
H. M. Scheepers ◽  
H. E. Jacobs
Keyword(s):  
2015 ◽  
Vol 71 (4) ◽  
pp. 529-537 ◽  
Author(s):  
R. C. Sarker ◽  
S. Gato-Trinidad

The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption.


2010 ◽  
Vol 136 (1) ◽  
pp. 19-26 ◽  
Author(s):  
E. J. M. Blokker ◽  
J. H. G. Vreeburg ◽  
J. C. van Dijk

2013 ◽  
Vol 10 (4) ◽  
pp. 4869-4900 ◽  
Author(s):  
R. Cahill ◽  
J. R. Lund ◽  
B. DeOreo ◽  
J. Medellín-Azuara

Abstract. The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.


Author(s):  
Syed Rizvi ◽  
Rabee Rustum ◽  
Malini Deepak ◽  
Grant B. Wright ◽  
Scott Arthur

Abstract Consumption of water is never constant throughout the day due to the daily routines of the consumer. This pattern of daily water consumption is called water demand profile. The initiative to create these profiles are to improve hydraulic performance and to build energy conservative strategies for designed networks in Dubai. Therefore, the aim is to develop and analyze a domestic consumption profile for selected developments with socio-demographic factors including weekday/weekend variation, population, income, fasting during the month of Ramadan, and the outbreak of Covid-19. Data from more than 7000 smart meters were collected while water meters of more than 350 residential flats were examined manually. Water demand profiles generated from the data showed weekdays have more predictable peaks (morning 6–8 am and evening 5–7 pm) than weekends. During Ramadan, peak hours shifted to 7–10 am followed by 3–4 pm during workdays while peaks for low income areas are higher due to stricter working routine. The Covid-19 crisis has led to significant rise in observed consumption, with over 30% increase during the month of Ramadan. The observed results, if compared with further end-use studies on more factors affecting demand profiles, can help in generating both cost and energy efficient networks.


2013 ◽  
Vol 14 (2) ◽  
pp. 205-211 ◽  
Author(s):  
Roman Neunteufel ◽  
Laurent Richard ◽  
Reinhard Perfler

Demographic and climate change will affect in the long term the total water consumption and therefore the planning and management of the related infrastructures. End-use studies provide information on water consumption and its influencing factors. However the availability of such detailed data is very limited. The research project carried out was based on total daily water consumption collected from 12 Austrian water supply areas for periods covering up to 10 years. The general data were complemented with high resolution measurements (ranging from day to 10 second intervals) of household consumption of residential buildings, semi-detached houses, single family homes, and weekend cottages as well as with meteorological data and comprehensive socio-economic and personal information. The major factors influencing residential household consumption are: demographic dynamics; age distribution; household size/family size; living conditions; and regional economic development. In the short term, water consumption is influenced by temperature, precipitation, day of the week and time. For residential consumption, these last parameters were found to be the main causes for the existing peak demands. Modernisation will lead to a further decrease of the indoor per capita water demand. The outdoor demand and its peaks are expected to increase due to climate change.


2012 ◽  
Vol 5 (1) ◽  
pp. 455-471
Author(s):  
E. J. Pieterse-Quirijns ◽  
E. J. M. Blokker ◽  
E. van der Blom ◽  
J. H. G. Vreeburg

Abstract. Existing guidelines related to the water demand of non-residential buildings are outdated and do not cover hot water demand for the appropriate selection of hot water devices. Moreover, they generally overestimate peak demand values required for the design of an efficient and reliable water system. Recently, a procedure was developed based on the end-use model SIMDEUM® to derive design rules for peak demand values of both cold and hot water during various time steps for several types and sizes of non-residential buildings, i.e. offices, hotels and nursing homes. In this paper, the design rules are validated with measurements of cold and hot water patterns on a per second base. The good correlation between the simulated patterns and the measured patterns indicates that the basis of the design rules, the SIMDEUM simulated standardised buildings, is solid. Moreover, the SIMDEUM based rules give a better prediction of the measured peak values for cold water flow than the existing guidelines. Furthermore, the new design rules can predict hot water use well. In this paper it is illustrated that the new design rules lead to reliable and improved designs of building installations and water heater capacity, resulting in more hygienic and economical installations.


Sign in / Sign up

Export Citation Format

Share Document