scholarly journals Application of a residential end-use model for estimating cold and hot water demand, wastewater flow and salinity

Water SA ◽  
2004 ◽  
Vol 30 (3) ◽  
Author(s):  
HE Jacobs ◽  
J Haarhoff
Keyword(s):  
2012 ◽  
Vol 5 (1) ◽  
pp. 455-471
Author(s):  
E. J. Pieterse-Quirijns ◽  
E. J. M. Blokker ◽  
E. van der Blom ◽  
J. H. G. Vreeburg

Abstract. Existing guidelines related to the water demand of non-residential buildings are outdated and do not cover hot water demand for the appropriate selection of hot water devices. Moreover, they generally overestimate peak demand values required for the design of an efficient and reliable water system. Recently, a procedure was developed based on the end-use model SIMDEUM® to derive design rules for peak demand values of both cold and hot water during various time steps for several types and sizes of non-residential buildings, i.e. offices, hotels and nursing homes. In this paper, the design rules are validated with measurements of cold and hot water patterns on a per second base. The good correlation between the simulated patterns and the measured patterns indicates that the basis of the design rules, the SIMDEUM simulated standardised buildings, is solid. Moreover, the SIMDEUM based rules give a better prediction of the measured peak values for cold water flow than the existing guidelines. Furthermore, the new design rules can predict hot water use well. In this paper it is illustrated that the new design rules lead to reliable and improved designs of building installations and water heater capacity, resulting in more hygienic and economical installations.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 447
Author(s):  
Miguel Alfonso Quiñones-Reveles ◽  
Víctor Manuel Ruiz-García ◽  
Sarai Ramos-Vargas ◽  
Benedicto Vargas-Larreta ◽  
Omar Masera-Cerutti ◽  
...  

This study aimed to evaluate and compare the relationship between chemical properties, energy efficiency, and emissions of wood and pellets from madroño Arbutus xalapensis Kunth, tázcate Juniperus deppeana Steud, and encino colorado Quercus sideroxyla Humb. & Bonpl. in two gasifiers (top-lit-up-draft (T-LUD) and electricity generation wood camp stove (EGWCS)) in order to determine the reduction of footprint carbon. In accordance with conventional methodologies, we determined the extracts and chemical components (lignin, cellulose, holocellulose), and the immediate analyses were carried out (volatile materials, fixed carbon, ash content and microanalysis of said ash), as well as the evaluation of emission factors (total suspended particulate matter (PM2.5), CO, CO2, CH4, black carbon (BC), elemental carbon (EC), and organic carbon (OC)). The results were statistically analyzed to compare each variable among species and gasifiers. The raw material analyzed showed how the pH ranged from 5.01 to 5.57, and the ash content ranged between 0.39 and 0.53%. The content values of Cu, Zn, Fe, Mg, and Ca ranged from 0.08 to 0.22, 0.18 to 0.19, 0.38 to 0.84, 1.75 to 1.90, and 3.62 to 3.74 mg kg−1, respectively. The extractive ranges from cyclohexane were 2.48–4.79%, acetone 2.42–4.08%, methanol 3.17–7.99%, and hot water 2.12–4.83%. The range of lignin was 18.08–28.60%. The cellulose content ranged from 43.30 to 53.90%, and holocellulose from 53.50 to 64.02%. The volatile material range was 81.2–87.42%, while fixed carbon was 11.30–17.48%; the higher heating value (HHV) of raw material and pellets presented the ranges 17.68–20.21 and 19.72–21.81 MJ kg−1, respectively. Thermal efficiency showed statistically significant differences (p < 0.05) between pellets and gasifiers, with an average of 31% Tier 3 in ISO (International Organization for Standardization) for the T-LUD and 14% (ISO Tier 1) for EGWCS, with Arbutus xalapensis being the species with the highest energy yield. The use of improved combustion devices, as well as that of selected raw material species, can reduce the impact of global warming by up to 33% on a cooking task compared to the three-stone burner.


Author(s):  
Ramses Vega ◽  
Hector E. Campbell ◽  
Juan de Dios Ocampo ◽  
Diego R. Bonilla G.

This paper shows the simulation and design of a flat plate solar collector system, used to feed hot water to a typical home located in the city of Mexicali, Baja California, México. The system consists of a solar collector, a storage tank, a water pump and accessories and special tools that allow its proper operation. Analyzing the consumption and end use of water in a typical House, a demand profile is established, which combined with the weather information of the region, constitutes the input parameters required for the simulation of the system, which is performed with the software package TRNSYS. Mexicali, due to its location (latitude 32 °, longitude 114 °) and semi-desert condition presents high temperatures in the summer and low in winter, so the design and operation of such systems require special features, not always considered in the conventional ratings. This paper presents methods for simulation and design oriented to optimize the dimensioning and operation of this type of solar heaters in regions with extreme temperature conditions.


2014 ◽  
Vol 70 ◽  
pp. 1334-1343 ◽  
Author(s):  
E.J. Pieterse-Quirijns ◽  
A.H. van Loon ◽  
H. Beverloo ◽  
E.J.M. Blokker ◽  
E. van der Blom ◽  
...  
Keyword(s):  

2019 ◽  
Vol 111 ◽  
pp. 04013
Author(s):  
Hye-Sun Jin ◽  
Han-Young Lim ◽  
You-Jeong Kim ◽  
Soo-Jin Lee ◽  
Sung-Im Kim ◽  
...  

To achieve the goal of reducing greenhouses gases, many countries have recognized the importance of energy conservation in the building sector, and such countries are considerably strengthening their building energy conservation policies by reinforcing design standards, encouraging remodeling, and requiring zero-energy construction. In order to effectively strengthen these policies, it is necessary to provide information concerning energy consumption in the building sector to ensure the technical and economic feasibility of policies in the marketplace, and to allow building users and policy makers to easily access and understand energy consumption characteristics. It is important to provide information that allows people to effectively understand the state of energy consumption by end-use (space heating, space cooling, domestic hot water, etc.) as part of the creation of a concrete plan for energy reduction that incorporates various service systems and is familiar to people. This is because providing such information plays an important role in establishing concrete policies and encouraging voluntary energy performance improvements by building occupants. South Korea operates the Korea Energy Statistics Information System (KESIS) and the information provided by this type of information system consists mainly of energy consumption by energy source (electricity, gas, etc.), and such systems remain inadequate for providing effective information on energy consumption and energy use intensity (EUI) by end-use (space heating, space cooling, domestic hot water, etc.) as part of the creation of a concrete plan for energy conservation. In order to accurately provide energy consumption information by end-use rather than limit the information to mainly consumption corresponding to energy sources, in this study, measurement systems were installed in 2014 ~ 2016 based on the overall sampling designs of previous studies for apartment units, classifications, measurement and data gathering methods for energy consumption by end-use. The annual statistical values for EUI by end-use were collected from the measurement data for 71 sample apartment units from May 2017 to April 2018. This data was calculated and analyzed using stratification variable levels for completion year, supplied area, and the heat source type.


2013 ◽  
Vol 6 (2) ◽  
pp. 99-114 ◽  
Author(s):  
E. J. Pieterse-Quirijns ◽  
E. J. M. Blokker ◽  
E. van der Blom ◽  
J. H. G. Vreeburg

Abstract. Existing Dutch guidelines for the design of the drinking water and hot water system of non-residential buildings are based on outdated assumptions on peak water demand or on unfounded assumptions on hot water demand. They generally overestimate peak demand values required for the design of an efficient and reliable water system. Recently, a procedure was developed based on the end-use model SIMDEUM to derive design-demand-equations for peak demand values of both cold and hot water during various time steps for several types and sizes of non-residential buildings, viz. offices, hotels and nursing homes. In this paper, the design-demand-equations are validated with measurements of cold and hot water patterns on a per second base and with surveys. The good correlation between the simulated water demand patterns and the measured patterns indicates that the basis of the design-demand-equations, the SIMDEUM simulated standardised buildings, is solid. Surveys were held to investigate whether the construction of the standardised buildings based on the dominant variable corresponds with practice. Surveys show that it is difficult to find relationships to equip the standardised buildings with users and appliances. However, the validation proves that with a proper estimation of the number of users and appliances in only the dominant functional room of the standardised buildings, SIMDEUM renders a realistic cold and hot water diurnal demand pattern. Furthermore, the new design-demand-equations based on these standardised buildings give a better prediction of the measured peak values for cold water flow than the existing guidelines. Moreover, the new design-demand-equations can predict hot water use well. In this paper it is illustrated that the new design-demand-equations lead to reliable and improved designs of building installations and water heater capacity, resulting in more hygienic and economical installations.


Sign in / Sign up

Export Citation Format

Share Document