scholarly journals Prevalence of common enteric viruses in municipal wastewater treatment plants and their health risks arising from wastewater reuse

2021 ◽  
Author(s):  
Peng Liu ◽  
Zihan Li ◽  
Zifan Che ◽  
Hu Xinran ◽  
Ming Ying ◽  
...  

Abstract Enteric viruses are known to be prevalent in municipal wastewater, but information on the health risks arising from wastewater reuse is limited. This study quantified six common enteric viruses in raw wastewater and determined the effectiveness of different secondary and tertiary treatment processes at reducing their abundances in three full-scale wastewater treatment plants in China. In the raw wastewater, polyomavirus BK and norovirus GII (Nov GII) exhibited the highest abundance among the detected DNA and RNA viruses, respectively, with concentrations >5 log10 copies/L. Viruses in the raw wastewater were mainly removed by the secondary treatment processes, with log reduction values ranging from 1 to 2. The tertiary treatment processes of both chlorination and ultraviolet irradiation facilitated the additional reduction of viruses. The quantitative microbial risk assessment was applied to estimate the health risks of adenovirus (Adv) and Nov GII when reusing the treated wastewater for irrigation of public green spaces and crops. Estimated disabled-adjusted life-years of Adv and Nov GII for both reuses were higher than the risk threshold (10−6) required by the WHO in the actual scenarios. More effective treatment technologies should be implemented to remove viruses for safe reuse of the treated wastewater.

2012 ◽  
Vol 65 (7) ◽  
pp. 1179-1189 ◽  
Author(s):  
S. Martin Ruel ◽  
J.-M. Choubert ◽  
H. Budzinski ◽  
C. Miège ◽  
M. Esperanza ◽  
...  

The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range. During the present work more than 100 substances were analysed through on-site mass balances over 19 municipal wastewater treatment lines. The most relevant substances according to their occurrence in raw wastewater, in treated wastewater and in sludge were identified, and their fate in wastewater treatment processes was assessed. About half of priority substances of WFD were found at concentrations higher than 0.1 μg/L in wastewater. For 26 substances, potential non-compliance with Environmental Quality Standard of Water Framework Directive has been identified in treated wastewater, depending on river flow. Main concerns are for Cd, DEHP, diuron, alkylphenols, and chloroform. Emerging substances of particular concern are by-products, organic chemicals (e.g. triclosan, benzothiazole) and pharmaceuticals (e.g. ketoprofen, diclofenac, sulfamethoxazole, carbamazepine). About 80% of the load of micropollutants was removed by conventional activated sludge plants, but about two-thirds of removed substances were mainly transferred to sludge.


2020 ◽  
Vol 74 (3) ◽  
pp. 156-160 ◽  
Author(s):  
Thomas Poiger ◽  
Martina Keller ◽  
Ignaz J. Buerge ◽  
Marianne E. Balmer

The herbicide glyphosate is frequently detected in surface waters and its occurrence is linked to agricultural as well as urban uses. Elevated concentrations downstream of wastewater treatment plants (WWTPs) suggest that municipal wastewater is an important source of glyphosate in surface waters. We therefore conducted a study at a typical municipal WWTP in Switzerland to characterize the seasonality of glyphosate occurrence, the removal efficiency, and the processes involved in glyphosate removal. Glyphosate was present in raw (mechanically treated) wastewater during the whole study period (April to November). A lab incubation experiment with activated sludge indicated negligible degradation of glyphosate. Lack of degradation combined with strong adsorption lead to substantial enrichment of the compound in the sludge. Due to this enrichment and the long residence time of activated sludge (several days, compared to hours for wastewater itself), concentrations in treated wastewater show comparatively little variation, whereas concentrations in raw wastewater may fluctuate considerably. Overall removal efficiencies were in the range of 71–96%. This behavior could be described qualitatively using a numerical model that included input of glyphosate via raw wastewater, adsorption to activated sludge, and export via treated wastewater and excess sludge, but excluded degradation processes.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1414 ◽  
Author(s):  
I-Tae Kim ◽  
Young-Seok Yoo ◽  
Young-Han Yoon ◽  
Ye-Eun Lee ◽  
Jun-Ho Jo ◽  
...  

The development of cost-effective methods, which generate minimal chemical wastewater, for methanol production is an important research goal. In this study, treated wastewater (TWW) was utilized as a culture solution for methanol production by mixed methanotroph species as an alternative to media prepared from commercial or chemical agents, e.g., nitrate mineral salts medium. Furthermore, a realistic alternative for producing methanol in wastewater treatment plants using biogas from anaerobic digestion was proposed. By culturing mixed methanotroph species with nitrate and phosphate-supplemented TWW in municipal wastewater treatment plants, this study demonstrates, for the first time, the application of biogas generated from the sludge digester of municipal wastewater treatment plants. NaCl alone inhibited methanol dehydrogenase and the addition of 40 mM formate as an electron donor increased methanol production to 6.35 mM. These results confirmed that this practical energy production method could enable cost-effective methanol production. As such, methanol produced in wastewater treatment plants can be used as an eco-friendly energy and carbon source for biological denitrification, which can be an alternative to reducing the expenses required for the waste water treatment process.


2013 ◽  
Vol 68 (3) ◽  
pp. 575-583 ◽  
Author(s):  
R. Mosteo ◽  
M. P. Ormad ◽  
P. Goñi ◽  
J. Rodríguez-Chueca ◽  
A. García ◽  
...  

The aim of this research work is to identify the presence of pathogens, bacteria and protozoa, in different treated urban wastewaters and to relate biological pollution with the processes used in wastewater treatment plants. A study of the possibilities for water reuse is carried out taking into account bacterial and parasite composition. The analysed bacteria and protozoa are: Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium perfringens (spore), Salmonella spp., Legionella spp., helminths eggs, Giardia, Cryptosporidium spp. and free-living amoebae (FLA). The selected municipal wastewater treatment plants (MWTPs) are located in Navarra (Spain) and the main difference between them is the use of natural lagoons as tertiary treatment in some plants. The results concerning bacteriological identification showed contamination of mainly faecal origin, and the use of natural lagoons as tertiary treatment in some MWTPs produced an important disinfection effect. Moreover, pathogen parasites such as Giardia and Cryptosporidium were not detected in the samples studied although FLA were identified in all cases.


2013 ◽  
Vol 5 (2) ◽  
pp. 1-8

The scope of this paper is the evaluation of wastewater reuse quality criteria and treatment specifications, appropriate to Greek conditions. The parameters that affect wastewater reuse criteria were taken into consideration, concerning among others reuse priorities, available treatment plants and effluent characteristics. The proposed wastewater reclamation criteria were verified by a series of lab-scale experiments, designed to study the feasibility and effectiveness of the following treatment schemes to produce treated wastewater suitable for reuse: a) disinfection of secondary effluent with UV radiation and chlorination and b) tertiary treatment and disinfection of wastewater with UV radiation and chlorination. The experimental data were analyzed using a stochastic statistical model that employs Monte Carlo simulation. The main scope of the stochastic approach was the regeneration of a greater set of data, based on the defined by the experimental information mathematical distribution of each parameter involved and the determination of relative probability distributions. Following this approach the standards proposed are realistic and feasible and in the case of restricted reuse can be readily achieved by the existing wastewater treatment plants in Greece. Even in the case of unrestricted reuse the additional treatment required can be achieved at a moderate cost, through upgrading of the existing plants with tertiary treatment.


Sign in / Sign up

Export Citation Format

Share Document