scholarly journals Improving capability of conceptual modeling of watershed rainfall–runoff using hybrid wavelet-extreme learning machine approach

2017 ◽  
Vol 20 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Kiyoumars Roushangar ◽  
Farhad Alizadeh ◽  
Vahid Nourani

Abstract Rainfall–runoff process identification, due to uncertainties and complexities, requires advanced modeling strategies. For this end, this study presented different strategies to explore spatio-temporal variation of rainfall–runoff process for the Ajichay watershed located in northwest Iran. Extreme learning machine (ELM) was used to predict the runoff in conceptual models. First, a geomorphology integrated ELM (G-ELM) was used to predict watershed runoff in multiple-stations form for the watershed. The spatial and temporal features of sub-basins were selected as input data wherein temporal features were pre-processed by wavelet transform (WT). Results confirmed the capability of G-ELM in successive prediction of watershed runoff. Afterwards, an integrated ELM (I-ELM) was developed based on conceptual reservoir modeling to predict monthly river runoff where the model had the semi-distributed specifications of ELM. This model was capable of exploring spatial variation of rainfall–runoff process without requiring physical characteristics of sub-basins. To meter sufficiency of the modeling strategies, cross-validation technique was performed for station 3 in which G-ELM performed better in comparison to I-ELMs. Furthermore, classic and wavelet-based modeling (W-ELM) of rainfall–runoff was performed for one-step-ahead predictions. Statistical evaluations confirmed the W-ELM, I-ELM, and G-ELM performance, respectively.




2021 ◽  
Author(s):  
Federico Amato ◽  
Fabian Guignard ◽  
Alina Walch

<p>Wind energy is a promising renewable resource to contribute to the energy transition in many parts of the world. In contrast to solar power, it is available at any time of the day; however, it is highly variable and complex to model. This poses challenges for the planning of future energy systems with high shares of wind power. The quantification of the spatial and temporal variation of wind power and the related uncertainty may hence provide valuable information for energy planners and policymakers. Here we propose an estimation of hourly wind energy potential at the Swiss national scale for pixels of 200 x 200 m<sup>2</sup>. To this aim, this research is structured into two parts. First, ten years of wind speed measurement collected at an hourly frequency on a set of 208 monitoring stations are interpolated using advanced spatio-temporal techniques, allowing the estimation of wind speed at unsampled locations. Second, the resulting wind field is used to estimate hourly wind power potential on a national scale.</p><p>Because of its turbulent nature and its very high variability, wind speed modelling is a challenging task, especially in complex mountainous regions. To face these challenges, the interpolation task is solved as follows. The wind speed data are decomposed through Empirical Orthogonal Functions (EOFs) in temporal basis and spatially dependent coefficients. Then, the spatial coefficients are interpolated. While any regression model could be used to model these coefficients, Extreme Learning Machine (ELM) - a single layer feed-forward neural network with random input weights – was chosen to perform this task, profiting of its high computation speed and of its ability to retrieve reliable and rigorous model uncertainty assessments. Finally, the wind speed time series are reconstructed at any location adopting the interpolated coefficients in the EOFs equation. Uncertainty is quantified by taking advantage of the ELM uncertainty estimates for the spatial coefficients’ models and of the orthogonality of the basis.</p><p>In the second part of the research, the modelled spatio-temporal wind field is used to estimate wind power potential, taking into account technical characteristics of horizontal-axis wind turbines as well as national regulatory planning limitations for the installation of power plants. The limitations include restrictions for noise abatement and landscape, natural, ecological and cultural heritage protection plans as provided in the Swiss national wind atlas. The resulting wind power potential represents the first dataset of its type for Switzerland, which may be used to model future energy systems with increased wind power production. Considering the spatial and temporal variability of wind hereby permits to assess the complementarity with other forms of renewables such as photovoltaics, which play a key role in Switzerland’s Energy Strategy.</p><p> </p><p><strong>References:</strong></p><p>Amato, Federico, et al. "A novel framework for spatio-temporal prediction of environmental data using deep learning." Scientific Reports 10.1 (2020): 1-11.</p><p>Guignard, Fabian, et al. "Uncertainty Quantification in Extreme Learning Machine: Analytical Developments, Variance Estimates and Confidence Intervals." arXiv preprint arXiv:2011.01704 (2020).</p><p>Walch, Alina, et al. "Big Data Mining for the Estimation of Hourly Rooftop Photovoltaic Potential and Its Uncertainty". Applied Energy 262 (2020): 114404.</p>



2020 ◽  
Author(s):  
András Bárdossy ◽  
Chris Kilsby ◽  
Faizan Anwar ◽  
Ning Wang

<p>Rainfall-runoff models produce outputs which differ from observations due to uncertainties in process description, process parametrization, uncertainties in observations and changing spatio-temporal variability of input and state variables. Traditionally, attention has been focused mostly on process parameters to quantify runoff uncertainty using e.g. GLUE.</p><p>Here we have focused on the role of precipitation uncertainty relating to discharge. For this purpose, we used an inverse model approach. We generated time series of daily precipitation with high spatial resolution  using a modified version of Random Mixing and the Shannon-Whittaker interpolation to improve simulated runoff using the SHETRAN (physically-based) and HBV (conceptual) models, both spatially distributed for various sub-catchments of the Neckar River in Germany.  HBV was initially calibrated using interpolated precipitation, while SHETRAN uses pre-defined parameters. The modelling goal was to find a spatio-temporal series of precipitation which improved the predicted runoff,  under the constraints that the precipitation values be the same at the measurement locations and share their spatial variability with the observations at a given step. Care was taken to select subsequent days for improvement such that the previously improved step considered the effect of the previous steps.</p><p>We asked the questions: i) does improving precipitation inputs for one sub-catchment bring runoff improvement for the others? ii) Can the improved precipitation using SHETRAN be used for HBV and still get runoff improvements as compared to the interpolated precipitation and vice versa?</p><p>Results showed that overall runoff errors were reduced by 40 to 50% for all sub-catchments. For the peaks, a reduction of 70 to 90% was observed. As compared with the interpolated fields, new fields showed similar overall distribution but different details at finer spatial scales. Swapping improved precipitations between SHETRAN and HBV showed improvement as compared with the discharge from interpolated precipitation.</p>



2018 ◽  
Vol 10 (7) ◽  
pp. 1129 ◽  
Author(s):  
Yi Lin ◽  
Jie Yu ◽  
Jianqing Cai ◽  
Nico Sneeuw ◽  
Fengting Li

Natural wetland ecosystems provide not only important habitats for many wildlife species, but also food for migratory and resident animals. In Shanghai, the Chongming Dongtan International Wetland, located at the mouth of the Yangtze River, plays an important role in maintaining both ecosystem health and ecological security of the island. Meanwhile it provides an especially important stopover and overwintering site for migratory birds, being located in the middle of the East Asian-Australasian Flyway. However, with the increase in development intensity and human activities, this wetland suffers from increasing environmental pressure. On the other hand, biological succession in the mudflat wetland makes Chongming Dongtan a rapidly developing and rare ecosystem in the world. Therefore, studying the wetland spatio-temporal change is an important precondition for analyzing the relationship between wetland evolution processes and human activities. This paper presents a novel method for analyzing land-use/cover changes (LUCC) on Chongming Dongtan wetland using multispectral satellite images. Our method mainly takes advantages of a machine learning algorithm, named the Kernel Extreme Learning Machine (K-ELM), which is applied to distinguish between different objects and extract their information from images. In the K-ELM, the kernel trick makes it more stable and accurate. The comparison between K-ELM and three other conventional classification methods indicates that the proposed K-ELM has the highest overall accuracy, especially for distinguishing between Spartina alternflora, Scirpus mariqueter, and Phragmites australis. Meanwhile, its efficiency is remarkable as well. Then a total of eight Landsat TM series images acquired from 1986 to 2013 were used for the LUCC analysis with K-ELM. According to the classification result, the change detection and spatio-temporal quantitative analysis were performed. The specific analysis of different objects are significant for learning about the historical changes to Chongming Dongtan and obtaining the evaluation rules. Generally, the rapid speed of Chongming Dongtan’s urbanization brought about great influence with respect to natural resources and the environment. Integrating the results into the ecological analysis and ecological regional planning of Dongtan could provide a reliable scientific basis for rational planning, development, and the ecological balance and regional sustainability of the wetland area.



Author(s):  
Amir Alizadeh ◽  
Ahmad Rajabi ◽  
Saeid Shabanlou ◽  
Behrouz Yaghoubi ◽  
Fariborz Yosefvand


2012 ◽  
Vol 17 (2) ◽  
pp. 238-251
Author(s):  
Jurga Rukšėnaitė ◽  
Pranas Vaitkus

In this paper, a method of artificial neural networks (NN) is proposed as an alternative tool for the one-step-ahead prediction of composite indicators (CIs) of Lithuania’s economy. CI is composed of widely used social and economic indicators. The NN is applied for forecasting CI during the financial crisis and later periods (2008–2010) on the basis of data of earlier years (1998–2007). In this work, the Extreme Learning Machine (ELM) algorithm is combined with locally weighted regression. The analysis shows that the prediction error of a testing sample is statistically smaller compared to Levenberg–Marquardt or ELM methods.



2021 ◽  
Vol 11 (13) ◽  
pp. 6238
Author(s):  
Bishwajit Roy ◽  
Maheshwari Prasad Singh ◽  
Mosbeh R. Kaloop ◽  
Deepak Kumar ◽  
Jong-Wan Hu ◽  
...  

Rainfall-runoff (R-R) modelling is used to study the runoff generation of a catchment. The quantity or rate of change measure of the hydrological variable, called runoff, is important for environmental scientists to accomplish water-related planning and design. This paper proposes (i) an integrated model namely EO-ELM (an integration of equilibrium optimizer (EO) and extreme learning machine (ELM)) and (ii) a deep neural network (DNN) for one day-ahead R-R modelling. The proposed R-R models are validated at two different benchmark stations of the catchments, namely river Teifi at Glanteifi and river Fal at Tregony in the UK. Firstly, a partial autocorrelation function (PACF) is used for optimal number of lag inputs to deploy the proposed models. Six other well-known machine learning models, called ELM, kernel ELM (KELM), and particle swarm optimization-based ELM (PSO-ELM), support vector regression (SVR), artificial neural network (ANN) and gradient boosting machine (GBM) are utilized to validate the two proposed models in terms of prediction efficiency. Furthermore, to increase the performance of the proposed models, paper utilizes a discrete wavelet-based data pre-processing technique is applied in rainfall and runoff data. The performance of wavelet-based EO-ELM and DNN are compared with wavelet-based ELM (WELM), KELM (WKELM), PSO-ELM (WPSO-ELM), SVR (WSVR), ANN (WANN) and GBM (WGBM). An uncertainty analysis and two-tailed t-test are carried out to ensure the trustworthiness and efficacy of the proposed models. The experimental results for two different time series datasets show that the EO-ELM performs better in an optimal number of lags than the others. In the case of wavelet-based daily R-R modelling, proposed models performed better and showed robustness compared to other models used. Therefore, this paper shows the efficient applicability of EO-ELM and DNN in R-R modelling that may be used in the hydrological modelling field.



2016 ◽  
Vol 11 (4) ◽  
pp. 428
Author(s):  
Dimas Fajar Uman Putra ◽  
Ontoseno Penangsang ◽  
Adi Soeprijanto ◽  
Hajime Miyauchi


Sign in / Sign up

Export Citation Format

Share Document