scholarly journals Performance evaluation of a municipal water distribution system using WaterCAD and Epanet

2018 ◽  
Vol 8 (3) ◽  
pp. 459-467 ◽  
Author(s):  
J. C. Agunwamba ◽  
O. R. Ekwule ◽  
C. C. Nnaji

Abstract Population explosion in urban settings usually exerts enormous pressure on existing water supply systems. The result is that overall water demand is usually not satisfied. This study evaluated the performance of Wadata sub-zone water distribution system with respect to pressure, velocity, hydraulic head loss and nodal demands using WaterCAD and Epanet. There was no statistical difference between the results of Epanet and WaterCAD, however, Epanet produced slightly higher results of pressure and velocity in about 60% of all cases examined. About 19 percent (18.52%) of the total number of nodes analyzed had negative pressures while 69 percent (69%) of the nodes had pressures less than the adopted pressure for the analysis. These negative pressures indicate that there is inadequate head within the distribution network for water conveyance to all the sections. About 88 percent (87.7%) of flow velocities in the pipes were within the adopted velocity while around 12 percent (12.3%) of the velocities exceeded the adopted velocity. These excess velocities are partly responsible for the leakages and pipe bursts observed at some points within the system. The results in this study revealed that the performance of the water distribution system of Wadata sub-zone under current demand is inefficient.

2021 ◽  
Author(s):  
Dessalegn Geleta Ebsa ◽  
Fekadu Fufa

Abstract. The study evaluates the hydraulic analysis of water supply distribution network using water GEMS v8i. which used for modeling and Simulation of hydraulic parameters in the distribution networks. The hydraulic parameters which analyzed by using this software were junction pressure, velocity of water in networking system, and nodal demands and the overall result of water supply did not satisfied demand. The water distribution system has been analyzed for steady state and extended period simulation for the present population scenario for intermittent water supply using water Gems v8i. About 14 percent of the total number of nodes analyzed had negative pressures while 68 percent of the nodes had pressures less than the adopted pressure for the analysis. These negative pressures indicate that there is inadequate head within the distribution network for water conveyance to all the sections. In the same manner 85.6 percent of flow velocities in the pipes were within the adopted velocity while around 14.4 percent of the velocities exceeded the adopted velocity. The results in this study revealed that the performance of the water distribution system of under current demand is inefficient.


2020 ◽  
Vol 10 (22) ◽  
pp. 8219
Author(s):  
Andrea Menapace ◽  
Ariele Zanfei ◽  
Manuel Felicetti ◽  
Diego Avesani ◽  
Maurizio Righetti ◽  
...  

Developing data-driven models for bursts detection is currently a demanding challenge for efficient and sustainable management of water supply systems. The main limit in the progress of these models lies in the large amount of accurate data required. The aim is to present a methodology for the generation of reliable data, which are fundamental to train anomaly detection models and set alarms. Thus, the results of the proposed methodology is to provide suitable water consumption data. The presented procedure consists of stochastic modelling of water request and hydraulic pipes bursts simulation to yield suitable synthetic time series of flow rates, for instance, inlet flows of district metered areas and small water supply systems. The water request is obtained through the superimposition of different components, such as the daily, the weekly, and the yearly trends jointly with a random normal distributed component based on the consumption mean and variance, and the number of users aggregation. The resulting request is implemented into the hydraulic model of the distribution system, also embedding background leaks and bursts using a pressure-driven approach with both concentrated and distributed demand schemes. This work seeks to close the gap in the field of synthetic generation of drinking water consumption data, by establishing a proper dedicated methodology that aims to support future water smart grids.


2010 ◽  
Vol 3 (1) ◽  
pp. 43-51 ◽  
Author(s):  
E. J. M. Blokker ◽  
J. H. G. Vreeburg ◽  
H. Beverloo ◽  
M. Klein Arfman ◽  
J. C. van Dijk

Abstract. An "all pipes" hydraulic model of a drinking water distribution system was constructed with two types of demand allocations. One is constructed with the conventional top-down approach, i.e. a demand multiplier pattern from the booster station is allocated to all demand nodes with a correction factor to account for the average water demand on that node. The other is constructed with a bottom-up approach of demand allocation, i.e., each individual home is represented by one demand node with its own stochastic water demand pattern. This was done for a drinking water distribution system of approximately 10 km of mains and serving ca. 1000 homes. The system was tested in a real life situation. The stochastic water demand patterns were constructed with the end-use model SIMDEUM on a per second basis and per individual home. Before applying the demand patterns in a network model, some temporal aggregation was done. The flow entering the test area was measured and a tracer test with sodium chloride was performed to determine travel times. The two models were validated on the total sum of demands and on travel times. The study showed that the bottom-up approach leads to realistic water demand patterns and travel times, without the need for any flow measurements or calibration. In the periphery of the drinking water distribution system it is not possible to calibrate models on pressure, because head losses are too low. The study shows that in the periphery it is also difficult to calibrate on water quality (e.g. with tracer measurements), as a consequence of the high variability between days. The stochastic approach of hydraulic modelling gives insight into the variability of travel times as an added feature beyond the conventional way of modelling.


2010 ◽  
Vol 10 (4) ◽  
pp. 570-576 ◽  
Author(s):  
C. Grandet ◽  
P. J. Binning ◽  
P. S. Mikkelsen ◽  
F. Blanchet

The potential effect of widespread rainwater harvesting practices on mains water demand and quality management are investigated for three different types of urban areas characterized by different roof area to water demand ratios. Two rainfall patterns are considered with similar average annual depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community if they enable the deferment of requirements for new mains water infrastructure.


2018 ◽  
Vol 59 ◽  
pp. 00007
Author(s):  
Izabela Zimoch ◽  
Ewelina Bartkiewicz

Mathematical modelling of the water supply systems (WSS) and water quality changes in the system is a complex and difficult task to solve, it requires an interdisciplinary approach to considering the determinants of WSS work. Prognosis models of the WSS in relation to hydraulic quantities are well known and there are many packages that implement these models. These packages allow you to calculate the flow and pressure in the water distribution system under certain operating conditions. However, to make a hydraulic model a useful tool in the management of water supply systems, a calibration process is required. This process involves estimating model parameters to minimize the difference between model results and actual observations. This is a complex and multi-stage process where the network graph and parameters such as roughness coefficient, pump characteristics, or nodal demands are checked and corrected. The following work contains a complex process of calibration of the actual WSS that supplies water to the customers of the selected part of the Silesian agglomeration.


Author(s):  
Isaac G. Musaazi ◽  
Jotham I. Sempewo ◽  
Mohammed Babu ◽  
Nicholas Kiggundu

Abstract Fluctuations in the network pressure of water supply systems affect hydraulic performance and water meter accuracy. The development of metering error curves requires steady-state conditions which are extremely rare in water distribution systems characterized by intermittent supply. Simple deterministic models are suggested and developed from monthly data collected over a 4-year period (2010–2014) for three most dominant meter models (Models 1–3) in the Kampala Water Distribution System (KWDS), Uganda. This study combines pressure and billing information at the same time to understand metering accuracy. Results showed that metering accuracy increased by 4.2, 8.4 and 2.9% when pressure was increased from 10 to 50 m for Models 1–3, respectively. Age did not influence the impact of pressure on meter accuracy. The most sensitive parameter in the model was the meter age. Metering accuracy was relatively constant after a period of 5 years. The least sensitive parameter was the working pressure which caused a slight change to the annual billed volume. The ability of the model to accurately predict the meter registration degenerated with an increasing annual billed volume. Model 2 meters were the best performing and probably the most suitable meters in the KWDS.


2017 ◽  
Vol 24 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Kamil Kamiński ◽  
Władysław Kamiński ◽  
Tomasz Mizerski

AbstractThe paper explains a method for discerning the parts of a water supply system in need of renovation. The results are based on technical data collected over the last twenty one years, concerning more than two hundred sections of both renovated and nonrenovated pipelines. In the study, an appropriately prepared data set was used for training an artificial neural network (ANN) in the form of a multilayer perceptron (MLP). Further comparison between the responses of the trained MLP and the decisions made by human experts showed satisfactory consistency, although 15% of the database records produced certain discrepancies. The presented method can help create an expert system capable of supporting failure-free operation of a water distribution system.


2019 ◽  
Vol 11 (4) ◽  
pp. 1411-1428 ◽  
Author(s):  
Lakshmi Kanthan Narayanan ◽  
Suresh Sankaranarayanan

Abstract The percentage of fresh water resource availability in the world is diminishing every year. According to a world economic forum survey, the increase in water demand will result in high scarcity globally in the next two decades. The eradication of the water demand increase and reducing the losses during the transportation of water is challenging. Thus accordingly, an Internet of Things (IoT)-based architecture integrated with Fog for underground water distribution system has been proposed. Towards designing an IoT water distribution architecture for a smart city, we need to first forecast the water demand for consumers. Hence, accordingly, water demand forecasting has been carried out on a daily basis for a period of three months as a case study using autoregressive integrated moving average (ARIMA) and regression analysis. Based on water demand forecasting analysis, a water distribution design for an IoT-based architecture has been carried out using hydraulic engineering design for proper distribution of water with minimal losses which would result in the development of a smart water distribution system (SWDS). This has been carried out using EPANET.


Sign in / Sign up

Export Citation Format

Share Document