scholarly journals Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study

2003 ◽  
Vol 1 (4) ◽  
pp. 195-207 ◽  
Author(s):  
Rachel T. Noble ◽  
Steven M. Allen ◽  
Angelia D. Blackwood ◽  
Weiping Chu ◽  
Sunny C. Jiang ◽  
...  

Assays for the detection and typing of adenoviruses, enteroviruses and F+ specific coliphages were performed on samples created as part of a national microbial source tracking methods comparison study. The samples were created blind to the researchers, and were inoculated with a variety of types of fecal contamination source (human, sewage, dog, seagull and cow) and mixtures of sources. Viral tracer and pathogen assays demonstrated a general ability to discriminate human from non-human fecal contamination. For example, samples inoculated with sewage were correctly identified as containing human fecal contamination because they contained human adenovirus or human enterovirus. In samples containing fecal material from individual humans, human pathogen analysis yielded negative results probably because the stool samples were taken from healthy individuals. False positive rates for the virus-based methods (0–8%) were among the lowest observed during the methods comparison study. It is suggested that virus-based source tracking methods are useful for identification of sewage contamination, and that these methods may also be useful as an indication of the public health risk associated with viral pathogens. Overall, virus-based source tracking methods are an important approach to include in the microbial source tracking ‘toolbox’.

2003 ◽  
Vol 1 (4) ◽  
pp. 225-231 ◽  
Author(s):  
Jill R. Stewart ◽  
R. D. Ellender ◽  
Janet A. Gooch ◽  
Sunny Jiang ◽  
Samuel P. Myoda ◽  
...  

The methods comparison study described in accompanying manuscripts demonstrated the potential value of microbial source tracking (MST) techniques, but also identified a need for method refinement. This paper provides three classes of recommendations to improve MST technology: optimization, development and evaluation. Optimization recommendations focus on library-dependent methods and include improved selection of restriction enzymes or antibiotics, better definition of appropriate library size, selection of target species and choice of statistical pattern-matching algorithms. Methods development recommendations focus on identifying new genomic targets and quantification procedures for library-independent methods. Longer-term methods development recommendations include integration of microarrays and other direct pathogen detection technology with MST. Studies defining host specificity and population dynamics should aid selection of target species during methods development. Evaluation recommendations include enhancements that should be incorporated into future methods comparison studies, along with studies to assess the value of MST results for risk characterization.


2006 ◽  
Vol 72 (12) ◽  
pp. 7886-7893 ◽  
Author(s):  
Ayalkibet Hundesa ◽  
Carlos Maluquer de Motes ◽  
Silvia Bofill-Mas ◽  
Nestor Albinana-Gimenez ◽  
Rosina Girones

ABSTRACT The Adenoviridae and Polyomaviridae families comprise a wide diversity of viruses which may be excreted for long periods in feces or urine. In this study, a preliminary analysis of the prevalence in the environment and the potential usefulness as source-tracking tools of human and animal adenoviruses and polyomaviruses has been developed. Molecular assays based on PCR specifically targeting human adenoviruses (HAdV), porcine adenoviruses (PAdV), bovine adenoviruses (BAdV), and bovine polyomaviruses (BPyV) were applied to environmental samples including urban sewage, slaughterhouse, and river water samples. PAdV and BPyV were detected in a very high percentage of samples potentially affected by either porcine or bovine fecal contamination, respectively. However, BAdV were detected in only one sample, showing a lower prevalence than BPyV in the wastewater samples analyzed. The 22 slaughterhouse samples with fecal contamination of animal origin showed negative results for the presence of HAdV. The river water samples analyzed were positive for the presence of both human and animal adenoviruses and polyomaviruses, indicating the existence of diverse sources of contamination. The identities of the viruses detected were confirmed by analyses of the amplified sequences. All BPyV isolates showed a 97% similarity in nucleotide sequences. This is the first time that PAdV5, BAdV6, and BPyV have been reported to occur in environmental samples. Human and porcine adenoviruses and human and bovine polyomaviruses are proposed as tools for evaluating the presence of viral contamination and for tracking the origin of fecal/urine contamination in environmental samples.


2017 ◽  
Vol 89 (2) ◽  
pp. 127-143 ◽  
Author(s):  
Rebecca N. Bushon ◽  
Amie M.G. Brady ◽  
Eric D. Christensen ◽  
Erin A. Stelzer

2004 ◽  
Vol 70 (3) ◽  
pp. 1448-1454 ◽  
Author(s):  
Carlos Maluquer de Motes ◽  
Pilar Clemente-Casares ◽  
Ayalkibet Hundesa ◽  
Margarita Mart�n ◽  
Rosina Girones

ABSTRACT In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.


2007 ◽  
Vol 73 (15) ◽  
pp. 4857-4866 ◽  
Author(s):  
Michèle Gourmelon ◽  
Marie Paule Caprais ◽  
Raphaël Ségura ◽  
Cécile Le Mennec ◽  
Solen Lozach ◽  
...  

ABSTRACT In order to identify the origin of the fecal contamination observed in French estuaries, two library-independent microbial source tracking (MST) methods were selected: (i) Bacteroidales host-specific 16S rRNA gene markers and (ii) F-specific RNA bacteriophage genotyping. The specificity of the Bacteroidales markers was evaluated on human and animal (bovine, pig, sheep, and bird) feces. Two human-specific markers (HF183 and HF134), one ruminant-specific marker (CF193′), and one pig-specific marker (PF163) showed a high level of specificity (>90%). However, the data suggest that the proposed ruminant-specific CF128 marker would be better described as an animal marker, as it was observed in all bovine and sheep feces and 96% of pig feces. F RNA bacteriophages were detected in only 21% of individual fecal samples tested, in 60% of pig slurries, but in all sewage samples. Most detected F RNA bacteriophages were from genotypes II and III in sewage samples and from genotypes I and IV in bovine, pig, and bird feces and from pig slurries. Both MST methods were applied to 28 water samples collected from three watersheds at different times. Classification of water samples as subject to human, animal, or mixed fecal contamination was more frequent when using Bacteroidales markers (82.1% of water samples) than by bacteriophage genotyping (50%). The ability to classify a water sample increased with increasing Escherichia coli or enterococcus concentration. For the samples that could be classified by bacteriophage genotyping, 78% agreed with the classification obtained from Bacteroidales markers.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2162 ◽  
Author(s):  
Hyatt Green ◽  
Daniel Weller ◽  
Stephanie Johnson ◽  
Edward Michalenko

Fecal contamination of waterbodies due to poorly managed human and animal waste is a pervasive problem that can be particularly costly to address, especially if mitigation strategies are ineffective at sufficiently reducing the level of contamination. Identifying the most worrisome sources of contamination is particularly difficult in periurban streams with multiple land uses and requires the distinction of municipal, agricultural, domestic pet, and natural (i.e., wildlife) wastes. Microbial source-tracking (MST) methods that target host-specific members of the bacterial order Bacteroidales and others have been used worldwide to identify the origins of fecal contamination. We conducted a dry-weather study of Onondaga Creek, NY, where reducing fecal contamination has been approached mainly by mitigating combined sewer overflow events (CSOs). Over three sampling dates, we measured in-stream concentrations of fecal indicator bacteria; MST markers targeting human, ruminant, and canine sources; and various physical–chemical parameters to identify contaminants not attributable to CSOs or stormwater runoff. We observed that despite significant ruminant inputs upstream, these contaminants eventually decayed and/or were diluted out and that high levels of urban bacterial contamination are most likely due to failing infrastructure and/or illicit discharges independent of rain events. Similar dynamics may control other streams that transition from agricultural to urban areas with failing infrastructure.


2013 ◽  
Vol 80 (2) ◽  
pp. 612-617 ◽  
Author(s):  
Kruti Ravaliya ◽  
Jennifer Gentry-Shields ◽  
Santos Garcia ◽  
Norma Heredia ◽  
Anna Fabiszewski de Aceituno ◽  
...  

ABSTRACTIn recent decades, fresh and minimally processed produce items have been associated with an increasing proportion of food-borne illnesses. Most pathogens associated with fresh produce are enteric (fecal) in origin, and contamination can occur anywhere along the farm-to-fork chain. Microbial source tracking (MST) is a tool developed in the environmental microbiology field to identify and quantify the dominant source(s) of fecal contamination. This study investigated the utility of an MST method based onBacteroidales16S rRNA gene sequences as a means of identifying potential fecal contamination, and its source, in the fresh produce production environment. The method was applied to rinses of fresh produce, source and irrigation waters, and harvester hand rinses collected over the course of 1 year from nine farms (growing tomatoes, jalapeño peppers, and cantaloupe) in Northern Mexico. Of 174 samples, 39% were positive for a universalBacteroidalesmarker (AllBac), including 66% of samples from cantaloupe farms (3.6 log10genome equivalence copies [GEC]/100 ml), 31% of samples from tomato farms (1.7 log10GEC/100 ml), and 18% of samples from jalapeño farms (1.5 log10GEC/100 ml). Of 68 AllBac-positive samples, 46% were positive for one of three human-specific markers, and none were positive for a bovine-specific marker. There was no statistically significant correlation betweenBacteroidalesand genericEscherichia coliacross all samples. This study provides evidence thatBacteroidalesmarkers may serve as alternative indicators for fecal contamination in fresh produce production, allowing for determination of both general contamination and that derived from the human host.


Sign in / Sign up

Export Citation Format

Share Document