scholarly journals Incidence of enterococci resistant to clinically relevant antibiotics in environmental waters and in reclaimed waters used for irrigation

2020 ◽  
Vol 18 (6) ◽  
pp. 911-924
Author(s):  
Silvia Monteiro ◽  
Ricardo Santos

Abstract Treated wastewater discharged into the environment or reused in different activities can be a major vehicle for the transmission of antibiotic-resistant bacteria and antibiotic-resistance genes. In this study, environmental and wastewater samples, collected at different stages of treatment, were studied to identify the possibility of a positive selection of antibiotic-resistant organisms in wastewater treatment plants (WWTPs). Enterococci were isolated, characterized into the main human species, and subjected to the Kirby–Bauer test using seven antibiotics (five classes): ampicillin, chloramphenicol, ciprofloxacin, gentamicin, linezolid, tetracycline, and vancomycin. Furthermore, vancomycin-resistant enterococci (VRE), a major cause of nosocomial infection, was identified, and the genes vanA and vanB detected directly in the samples and in all confirmed VRE. Data showed that WWTPs were able to reduce the levels of antibiotic resistance, although 72% of the disinfected wastewaters still presented antibiotic-resistant enterococci. VRE were detected in 6% of the samples, including in reclaimed waters. UV disinfection was not effective at removing VRE and multiple antibiotic-resistant (MAR) enterococci, most commonly Enterococcus faecalis. The use of reclaimed water containing VRE and MAR enterococci in crop production, irrigation of urban gardens, and street cleaning increases immensely the potential risk to human health.

2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


2020 ◽  
Vol 10 (17) ◽  
pp. 5816
Author(s):  
Damian Rolbiecki ◽  
Monika Harnisz ◽  
Ewa Korzeniewska ◽  
Łukasz Jałowiecki ◽  
Grażyna Płaza

This study identified differences in the prevalence of antibiotic resistance genes (ARGs) between wastewater treatment plants (WWTPs) processing different proportions of hospital and municipal wastewater as well as various types of industrial wastewater. The influence of treated effluents discharged from WWTPs on the receiving water bodies (rivers) was examined. Genomic DNA was isolated from environmental samples (river water, wastewater and sewage sludge). The presence of genes encoding resistance to sulfonamides (sul1, sul2) and fluoroquinolones (qepA, aac(6′)-Ib-cr) was determined by standard polymerase chain reaction (PCR). The effect of the sampling season (summer – June, fall – November) was analyzed. Treated wastewater and sewage sludge were significant reservoirs of antibiotic resistance and contained all of the examined ARGs. All wastewater samples contained sul1 and aac(6′)-lb-cr genes, while the qepA and sul2 genes occurred less frequently. These observations suggest that the prevalence of ARGs is determined by the type of processed wastewater. The Warmia and Mazury WWTP was characterized by higher levels of the sul2 gene, which could be attributed to the fact that this WWTP processes agricultural sewage containing animal waste. However, hospital wastewater appears to be the main source of the sul1 gene. The results of this study indicate that WWTPs are significant sources of ARGs, contributing to the spread of antibiotic resistance in rivers receiving processed wastewater.


Author(s):  
Alicia Sorgen ◽  
James Johnson ◽  
Kevin Lambirth ◽  
Sandra Clinton ◽  
Molly Redmond ◽  
...  

Bacterial resistance to antibiotics is a growing global concern, threatening human and environ-mental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and trans-fer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify phenotypically resistant cultivable portions of these bacterial communities and charac-terized the composition of the culturable subset of these populations. Resistant taxa were more abundant in raw sewage and wastewater before the biological aeration treatment stage. While some antibiotic resistant bacteria (ARB) were detectable downstream of treated wastewater re-lease, these organisms are not enriched relative to effluent-free upstream water, indicating effi-cient removal during treatment. Combined culture-dependent and culture-independent analyses revealed a stark difference in community composition between culturable fractions and the envi-ronmental source material, irrespective of culturing conditions. Higher proportions of the envi-ronmental populations were recovered than predicted by the widely accepted 1% culturability paradigm. These results represent baseline abundance and compositional data for ARB commu-nities for reference in future studies addressing the dissemination of antibiotic resistance associ-ated with urban wastewater treatment ecosystems.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1593
Author(s):  
Lisa Paruch ◽  
Adam M. Paruch ◽  
Tanta-Verona Iordache ◽  
Andreea G. Olaru ◽  
Andrei Sarbu

Wastewater (WW) has been widely recognized as the major sink of a variety of emerging pathogens (EPs), antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which may disseminate and impact wider environments. Improving and maximizing WW treatment efficiency to remove these microbial hazards is fundamentally imperative. Despite a variety of physical, biological and chemical treatment technologies, the efficiency of ARG removal is still far from satisfactory. Within our recently accomplished M-ERA.NET project, novel functionalized nanomaterials, i.e., molecularly imprinted polymer (MIP) films and quaternary ammonium salt (QAS) modified kaolin microparticles, were developed and demonstrated to have significant EP removal effectiveness on both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) from WW. As a continuation of this project, we took the further step of exploring their ARG mitigation potential. Strikingly, by applying MIP and QAS functionalized kaolin microparticles in tandem, the ARGs prevalent in wastewater treatment plants (WWTPs), e.g., blaCTXM, ermB and qnrS, can be drastically reduced by 2.7, 3.9 and 4.9 log (copies/100 mL), respectively, whereas sul1, tetO and mecA can be eliminated below their detection limits. In terms of class I integron-integrase I (intI1), a mobile genetic element (MGE) for horizontal gene transfer (HGT), 4.3 log (copies/100 mL) reduction was achieved. Overall, the novel nanomaterials exhibit outstanding performance on attenuating ARGs in WW, being superior to their control references. This finding provides additional merit to the application of developed nanomaterials for WW purification towards ARG elimination, in addition to the proven bactericidal effect.


2020 ◽  
Vol 81 (10) ◽  
pp. 2221-2231 ◽  
Author(s):  
Lei Chen ◽  
Zhi Zhou ◽  
Chaofeng Shen ◽  
Yilu Xu

Abstract Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment are of great concern due to their potential risk to human health. The effluents from wastewater treatment plants and livestock production are major sources of ARB and ARGs. Chlorination, UV irradiation, and ozone disinfection cannot remove ARGs completely. In this study, the potential of electrochemical oxidation and electro-Fenton processes as alternative treatment technologies for inactivation of ARB and ARGs in both intracellular and extracellular forms was evaluated. Results showed that the electrochemical oxidation process was effective for the inactivation of selected ARB but not for the removal of intracellular ARGs or extracellular ARGs. The electro-Fenton process was more effective for the removal of both intracellular and extracellular ARGs. The removal efficiency after 120 min of electro-Fenton treatment under 21.42 mA/cm2 was 3.8 logs for intracellular tetA, 4.1 logs for intracellular ampC, 5.2 logs for extracellular tetA, and 4.8 logs for extracellular ampC, respectively in the presence of 1.0 mmol/L Fe2+. It is suggested that electrochemical oxidation is an effective disinfection method for ARB and the electro-Fenton process is a promising technology for the removal of both intracellular and extracellular ARGs in wastewater.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 352
Author(s):  
Alicia Sorgen ◽  
James Johnson ◽  
Kevin Lambirth ◽  
Sandra M. Clinton ◽  
Molly Redmond ◽  
...  

Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify phenotypically resistant cultivable portions of these bacterial communities and characterized the composition of the culturable subset of these populations. Resistant taxa were more abundant in raw sewage and wastewater before the biological aeration treatment stage. While some antibiotic-resistant bacteria (ARB) were detectable downstream of treated wastewater release, these organisms are not enriched relative to effluent-free upstream water, indicating efficient removal during treatment. Combined culture-dependent and -independent analyses revealed a stark difference in community composition between culturable fractions and the environmental source material, irrespective of culturing conditions. Higher proportions of the environmental populations were recovered than predicted by the widely accepted 1% culturability paradigm. These results represent baseline abundance and compositional data for ARB communities for reference in future studies addressing the dissemination of antibiotic resistance associated with urban wastewater treatment ecosystems.


Author(s):  
Gabriela Bairán ◽  
Georgette Rebollar-Pérez ◽  
Edith Chávez-Bravo ◽  
Eduardo Torres

Advances generated in medicine, science, and technology have contributed to a better quality of life in recent years; however, antimicrobial resistance has also benefited from these advances, creating various environmental and health problems. Several determinants may explain the problem of antimicrobial resistance, such as wastewater treatment plants that represent a powerful agent for the promotion of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG), and are an important factor in mitigating the problem. This article focuses on reviewing current technologies for ARB and ARG removal treatments, which include disinfection, constructed wetlands, advanced oxidation processes (AOP), anaerobic, aerobic, or combined treatments, and nanomaterial-based treatments. Some of these technologies are highly intensive, such as AOP; however, other technologies require long treatment times or high doses of oxidizing agents. From this review, it can be concluded that treatment technologies must be significantly enhanced before the environmental and heath problems associated with antimicrobial resistance can be effectively solved. In either case, it is necessary to achieve total removal of bacteria and genes to avoid the possibility of regrowth given by the favorable environmental conditions at treatment plant facilities.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2309
Author(s):  
Iva Buriánková ◽  
Peter Kuchta ◽  
Anna Molíková ◽  
Kateřina Sovová ◽  
David Výravský ◽  
...  

Antibiotic resistance has become a global threat in which the anthropogenically influenced aquatic environment represents not only a reservoir for the spread of antibiotic resistant bacteria (ARB) among humans and animals but also an environment where resistance genes are introduced into natural microbial ecosystems. Wastewater is one of the sources of antibiotic resistance. The aim of this research was the evaluation of wastewater impact on the spread of antibiotic resistance in the water environment. In this study, qPCR was used to detect antibiotic resistance genes (ARGs)—blaCTX-M-15, blaCTX-M-32, ampC, blaTEM, sul1, tetM and mcr-1 and an integron detection primer (intl1). Detection of antibiotic resistant Escherichia coli was used as a complement to the observed qPCR results. Our results show that the process of wastewater treatment significantly reduces the abundances of ARGs and ARB. Nevertheless, treated wastewater affects the ARGs and ARB number in the receiving river.


10.2196/33365 ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. e33365
Author(s):  
Mahbub-Ul Alam ◽  
Sharika Ferdous ◽  
Ayse Ercumen ◽  
Audrie Lin ◽  
Abul Kamal ◽  
...  

Background The widespread and unrestricted use of antibiotics has led to the emergence and spread of antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and antibiotic residues in the environment. Conventional wastewater treatment plants (WWTPs) are not designed for effective and adequate removal of ARB, ARGs, and antibiotic residues, and therefore, they play an important role in the dissemination of antimicrobial resistance (AMR) in the natural environment. Objective We will conduct a systematic review to determine the most effective treatment strategies for the removal of ARB, ARGs, and antibiotic residues from the treated effluent disposed into the environment from WWTPs that receive municipal, hospital, and domestic discharge. Methods We will search the MEDLINE, EMBASE, Web of Science, World Health Organization Global Index Medicus, and ProQuest Environmental Science Collection databases for full-text peer-reviewed journal articles published between January 2001 and December 2020. We will select only articles published in the English language. We will include studies that measured (1) the presence, concentration, and removal rate of ARB/ARGs going from WWTP influent to effluent, (2) the presence, concentration, and types of antibiotics in the effluent, and (3) the possible selection of ARB in the effluent after undergoing treatment processes in WWTPs. At least two independent reviewers will extract data and perform risk of bias assessment. An acceptable or narrative synthesis method will be followed to synthesize the data and present descriptive characteristics of the included studies in a tabular form. The study has been approved by the Ethics Review Board at the International Centre for Diarrhoeal Disease Research, Bangladesh (protocol number: PR-20113). Results This protocol outlines our proposed methodology for conducting a systematic review. Our results will provide an update to the existing literature by searching additional databases. Conclusions Findings from our systematic review will inform the planning of proper treatment methods that can effectively reduce the levels of ARB, ARGs, and residual antibiotics in effluent, thus lowering the risk of the environmental spread of AMR and its further transmission to humans and animals. International Registered Report Identifier (IRRID) PRR1-10.2196/33365


Sign in / Sign up

Export Citation Format

Share Document