scholarly journals Evaluating the resilience of a full-scale down-flow hanging sponge reactor to shock-loadings

Author(s):  
Takashi Onodera ◽  
Tsutomu Okubo ◽  
Daisuke Takayama ◽  
Kazuaki Syutsubo ◽  
Takashi Yamaguchi ◽  
...  

Abstract The effect of shock-loading on the performance of a full-scale down-flow hanging sponge (DHS), used to treat effluent from an up-flow anaerobic sludge blanket treating municipal sewage, was evaluated. This full-scale DHS reactor comprises a polyurethane sponge that retains the sludge. It has a capacity of 500 m3/day and, at the time of this study, had been operating at a sewage treatment plant in India for more than 1,300 days. The DHS reactor was exposed to shock-loadings of organics at double the normal rate for 400 min under summer and winter conditions. The results showed that the DHS reactor maintained stable operation under the organic shock-loading and that it returned to a steady state soon after restart, confirming that the reactor was resilient to organic shock-loadings.

2019 ◽  
Vol 35 (4) ◽  
pp. 1352-1359
Author(s):  
Nimeshchandra Vasanji Vashi ◽  
Navinchandra Champaklal Shah ◽  
Kishor Ratilal Desai

Upflow Anaerobic Sludge Blanket (UASB) process is a popular process for treatment of sewage in India due to its low power requirement. However, UASB system has many limitations in terms of removal of carbon, nutrients and pathogens. This requires post treatment after UASB to meet the treated water quality standards. Current treatment processes adopted for the post-treatment of anaerobically treated sewage, especially the full-scale UASB reactors in Surat, India are presented. Two full scale treatment plants with different UASB post treatment processes viz., Extended Aeration and Moving Bed Biological Reactor (MBBR) are selected for studies. A pilot study was carried out in a full scale Sewage Treatment Plant (STP) to study the performance of Sequential Batch Reactor (SBR) for treatment of UASB treated sewage and the results are reported for period of Three months. Inlet and outlet parameters such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), etc. for post UASB biological process are presented. The performance of the SBR process was observed to be better among all the processes studied.


2017 ◽  
Vol 12 (1) ◽  
pp. 202-210 ◽  
Author(s):  
A. P. Rosa ◽  
A. V. Santos ◽  
A. D. U. C. Schmidt ◽  
J. M. Borges ◽  
C. A. L. Chernicharo

This paper aimed to evaluate the effectiveness of a device to remove scum from the inner part of gas-liquid-solid separators of a full-scale upflow anaerobic sludge blanket reactor treating domestic sewage, as well as determining the scum yield coefficient for different reactors’ operating conditions. The experiments were carried out at the Laboreaux sewage treatment plant (Itabira, Minas Gerais, Brazil) and the effectiveness of the scum removal device was fully demonstrated, with median efficiencies ranging from 65 to 90%. The average scum yield varied from 6.8 to 14.6 mL of scum formed per kg COD applied.


2016 ◽  
Vol 181 ◽  
pp. 832-837 ◽  
Author(s):  
Takashi Onodera ◽  
Daisuke Takayama ◽  
Akiyoshi Ohashi ◽  
Takashi Yamaguchi ◽  
Shigeki Uemura ◽  
...  

2017 ◽  
Vol 76 (8) ◽  
pp. 2003-2014 ◽  
Author(s):  
Pollyane Diniz Saliba ◽  
Marcos von Sperling

The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 413-420 ◽  
Author(s):  
P. C. Chiang ◽  
J. H. You

In this investigation it was found that the waste sludge obtained from a municipal sewage treatment plant could be reclaimed as an adsorbent for removal of organic vapours, i.e. toluene, methyl-ethyl-ketone and 1-1-2-trichloroethylene, through use of a pyrolysis technique. In order to find the optimum manufacturing process, several tests were performed under various conditions in which the addition of a catalyst, temperature control, and residence time in the furnace, were considered as the three major factors. Both the reclaimed adsorbent and commercially available activated carbon were evaluated to determine their adsorption capacity at various influent concentrations of organic vapours.


1996 ◽  
Vol 33 (1) ◽  
pp. 89-99 ◽  
Author(s):  
F. Göhle ◽  
A. Finnson ◽  
B. Hultman

Bromma sewage treatment plant in Stockholm is the second largest plant in Stockholm and will in the near future have requirements for nitrogen removal. This means that a higher sludge age must be used in the aeration basin. This may be accomplished by an increase of the sludge concentration up to values until the limiting solids flux is exceeded. Measurement of the sludge blanket level is a possibility for better control of the sedimentation basin. Different measurements were performed to evaluate the main factors influencing the level. Dynamic simulation studies were performed at Bromma sewage treatment plant in Stockholm of the sludge blanket level and the return sludge concentration in a full-scale sedimentation basin. The simulations were performed with the help of a Danish simulation package, EFOR (1992), in which both reactions in the aeration basin (mainly based on the IAWPRC model) and separation processes in the sedimentation basin (both clarification and thickening) can be studied. The thickening model is based on the solids flux theory and the Vesilind formula (1979). Different methods were compared for determination and use of characteristic parameters in the Vesilind formula.


Author(s):  
Włodzimierz Kanownik ◽  
Agnieszka Policht-Latawiec ◽  
Magdalena Wiśnios

Abstract The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e.) – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2) as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.


Sign in / Sign up

Export Citation Format

Share Document