The Control of Iron Bacterial Plugging of a Well by Tyndallization Using Hot Water Recycling

1986 ◽  
Vol 21 (1) ◽  
pp. 50-57 ◽  
Author(s):  
D. R. Cullimore ◽  
N. Mansuy

Abstract A small diameter water well drilled in 1977 in the Town of Bulyea, Saskatchewan generated such a rapid plugging (biofouling) that by 1979 the flow rate was reduced by 59%. Heavy growths of non-specific iron bacteria were found in the water and biofouling projected to be the principal cause of the flow loss. Tyndallization (repeated pasteurizations) treatment was applied using a hot water recycling system installed above the well head. Using a displacement passive gravity direct injection of hot water at 82°C from a water heater into the well, a sequential elevation of water column temperatures occurred until bio-film dispersion occurred (pasteurization) at 45°C+. A recovery to original flow specifications was repeatedly obtained at time intervals ranging from 6 to 403 days. Between treatments, a recurrence of biofouling was noted with flow reductions of 0.06 – 0.07 1/min/day frequently being noted. The rate of plugging appeared to be affected by the previous sequence of pasteurization treatments. Tyndallization was found to satisfactorily control iron bacterial biofouling and maintain flow rates.

Author(s):  
H. I. Abu-Mulaweh

Heat pump water heater was designed and a prototype was developed and constructed. The performance of the heat pump water heater prototype is described by presenting some experimental test data. The experimental measurements include temperature, flow rates, and power consumption. The testing procedure consisted of evaluating the recovery rate and the coefficient of performance (COP) of the system. The results strongly indicate that heat pump water heater system design is very practical and it provides the consumer with a more efficient hot water heater alternative.


2021 ◽  
Vol 11 (15) ◽  
pp. 7043
Author(s):  
Tun-Ping Teng ◽  
Shang-Pang Yu ◽  
Yeou-Feng Lue ◽  
Qi-Lin Xie ◽  
Hsiang-Kai Hsieh ◽  
...  

This study selects titanium dioxide (TiO2) and multi-walled carbon nanotubes (MWCNTs) as far-infrared materials (FIRMs), and further adds water-based acrylic coatings to prepare far-infrared coatings (FIRCs). FIRCs are uniformly coated on #304 stainless steel sheets to make the test samples, which are then installed between the shell and insulation material of the hot water heater to measure the influences of various FIRCs on the performance of the hot water heater. The research results show no significant difference in the heating rate or heat insulation performance of the hot water heater with or without FIRCs coating. However, the uniformity of the water temperatures of the test samples is significantly improved with FIRCs. Considering that the uniformity of water temperature will inhibit the heating rate and heat insulation performance of the hot water heater, TiO2-FIRC should provide better performance improvement when applied to the hot water heater in this study. The application of TiO2-FIRC to large-scale hot water heaters with a high aspect ratio will effectively improve the quality of hot water supply in the future.


2019 ◽  
Vol 110 ◽  
pp. 01072 ◽  
Author(s):  
Vladimir Shcherbakov ◽  
Aleksandr Akulshin ◽  
Aleksandr Bachmetev ◽  
Anatolyi Akulshin

The paper is devoted to the problem of optimal design, construction and operation of water supply systems and their elements. The key element of the system is a water well. The quality of its design and construction determines the operation of the water intake as a whole. Disadvantages in the construction of a well lead to disruption of the entire water supply system of a particular object. The paper proposed a methodology for selecting the optimal diameter and length of the well filter of a water well. Based on the methodology, an example of filter parameters selection for hydrogeological conditions of the city of Kursk is given. The above calculation showed that the use of the entrance velocity criterion in the design of wells can significantly reduce the cost of well construction while ensuring the design flow rate and allowable lowering of the water level. The cost of the filter, depending on the well design, is 20-30% of the total price for its construction. The most important filter parameters affecting the cost of a well are its length and diameter. Justifying the minimum diameter of the filter that ensures the designed water intake and allowable dewatering can significantly reduce the cost of the well, taking into account the fact that modern pumping equipment allows the use of columns of small diameter above the filter.


Author(s):  
Ramses Vega ◽  
Hector E. Campbell ◽  
Juan de Dios Ocampo ◽  
Diego R. Bonilla G.

This paper shows the simulation and design of a flat plate solar collector system, used to feed hot water to a typical home located in the city of Mexicali, Baja California, México. The system consists of a solar collector, a storage tank, a water pump and accessories and special tools that allow its proper operation. Analyzing the consumption and end use of water in a typical House, a demand profile is established, which combined with the weather information of the region, constitutes the input parameters required for the simulation of the system, which is performed with the software package TRNSYS. Mexicali, due to its location (latitude 32 °, longitude 114 °) and semi-desert condition presents high temperatures in the summer and low in winter, so the design and operation of such systems require special features, not always considered in the conventional ratings. This paper presents methods for simulation and design oriented to optimize the dimensioning and operation of this type of solar heaters in regions with extreme temperature conditions.


2016 ◽  
Author(s):  
Gabriel Agila ◽  
Guillermo Soriano

This research develops a detailed model for a Water to Water Heat Pump Water Heater (HPWH), operating for heating and cooling simultaneously, using two water storage tanks as thermal deposits. The primary function of the system is to produce useful heat for domestic hot water services according to the thermal requirements for an average household (two adults and one child) in the city of Quito, Ecuador. The purpose of the project is to analyze the technical and economic feasibility of implementing thermal storage and heat pump technology to provide efficient thermal services and reduce energy consumption; as well as environmental impacts associated with conventional systems for residential water heating. An energy simulation using TRNSYS 17 is carried to evaluate model operation for one year. The purpose of the simulation is to assess and quantifies the performance, energy consumption and potential savings of integrating heat pump systems with thermal energy storage technology, as well as determines the main parameter affecting the efficiency of the system. Finally, a comparative analysis based on annual energy consumption for different ways to produce hot water is conducted. Five alternatives were examined: (1) electric storage water heater; (2) gas fired water heater; (3) solar water heater; (4) air source heat pump water heater; and (5) a heat pump water heater integrated with thermal storage.


2006 ◽  
Vol 129 (2) ◽  
pp. 226-234
Author(s):  
Robert Hendron ◽  
Mark Eastment ◽  
Ed Hancock ◽  
Greg Barker ◽  
Paul Reeves

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, CO, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35L∕s(75cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark (Hendron, R., 2005 NREL Report No. 37529, NREL, Golden, CO). The largest contributors to energy savings beyond McStain’s standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.


Sign in / Sign up

Export Citation Format

Share Document