scholarly journals AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR FORECASTING AUSTRALIA’S DOMESTIC LOW COST CARRIER PASSENGER DEMAND

Aviation ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 150-163 ◽  
Author(s):  
Panarat Srisaeng ◽  
Glenn S. Baxter ◽  
Graham Wild

This study has proposed and empirically tested two Adaptive Neuro-Fuzzy Inference System (ANFIS) models for the first time for predicting Australia‘s domestic low cost carriers‘ demand, as measured by enplaned passengers (PAX Model) and revenue passenger kilometres performed (RPKs Model). In the ANFIS, both the learning capabilities of an artificial neural network (ANN) and the reasoning capabilities of fuzzy logic are combined to provide enhanced prediction capabilities, as compared to using a single methodology. Sugeno fuzzy rules were used in the ANFIS structure and the Gaussian membership function and linear membership functions were also developed. The hybrid learning algorithm and the subtractive clustering partition method were used to generate the optimum ANFIS models. Data was normalized in order to increase the model‘s training performance. The results found that the mean absolute percentage error (MAPE) for the overall data set of the PAX and RPKs models was 1.52% and 1.17%, respectively. The highest R2-value for the PAX model was 0.9949 and 0.9953 for the RPKs model, demonstrating that the models have high predictive capabilities.

2014 ◽  
Vol 71 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Mawuli Dzakpasu ◽  
Miklas Scholz ◽  
Valerie McCarthy ◽  
Siobhán Jordan ◽  
Abdulkadir Sani

Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Muna A Alzukrah ◽  
Yosof M Khalifa

The prediction of solar radiation is very important tool in climatology, hydrology and energy applications, as it permits estimating solar data for locations where measurements are not available. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) is presented to predict the monthly global solar radiation on a horizontal surface in Libya. The real meteorological solar radiation data from 5 stations for the period of 1982 - 2009 with diffrent latitudes and longitudes were used in the current study. The data set is divided into two subsets; the fist is used for training and the latter is used for testing the model. (ANFIS) combines fuzzy logic and neural network techniques that are used in order to gain more effiency. The statistical performance parameters such as root mean square error (RMSE), mean absolute percentage error (MAPE) and the coeffient of effiency (E) were calculated to check the adequacy of the model. On the basis of coeffient of effiency, as well as the scatter diagrams and the error modes, the predicted results indicate that the neuro-fuzzy model gives reasonable results: accuracy of about 92% - 96% and the RMSE ranges between 0.22 - 0.35 kW.hr/m2/day


2020 ◽  
Vol 39 (3) ◽  
pp. 4651-4665
Author(s):  
Sunkuru Gopal Krishna Patro ◽  
Brojo Kishore Mishra ◽  
Sanjaya Kumar Panda ◽  
Raghvendra Kumar ◽  
Hoang Viet Long ◽  
...  

A recommender system (RS) delivers personalized suggestions on products based on the interest of a particular user. Content-based filtering (CBF) and collaborative filtering (CF) schemes have been previously used for this task. However, the main challenge in RS is cold start problem (CSP). This originates once a new user joins the system which makes the recommendation task tedious due to the shortage of information (clickstream, dwell time, rating, etc.) regarding the user’s interest. Therefore, CBF and CF are combined together by developing a knowledge-based preference learning (KBPL) system. This system considers the demographic data that includes gender, occupation, and age for the recommendation task. Initially, the dataset is clustered using the self-organizing map (SOM) technique, then the high dimensional data is decomposed by higher-order singular value decomposition (HOSVD) and finally, Adaptive neuro-fuzzy inference system (ANFIS) predicts the output. For the big dataset, SOM is a robust clustering method and the similarities among the users can be easily observed by grid clustering. The HOSVD extracts the required information from the available data set to find the user similarity by decomposing the dataset in lower dimensions. ANFIS uses IF-THEN rules to recommend similar product to the new users. The proposed KBPL system is evaluated with the Black Friday dataset and the obtained error value is compared with the existing CF and CBF techniques. The proposed KBPL system has obtained root mean squared error (RMSE) of 0.71%, mean absolute error (MAE) of 0.54%, and mean absolute percentage error (MAPE) of 37%. Overall, the outcome of the comparative analysis shows minimum error and better performance in terms of precision, recall, and f-measure for the proposed KBPL system compared to the existing techniques and therefore more suitable for accurately recommending the products for the new users.


2016 ◽  
Vol 5 (4) ◽  
pp. 64-82 ◽  
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen I. Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.


Author(s):  
Zahra Sadeghtabaghi ◽  
Mohsen Talebkeikhah ◽  
Ahmad Reza Rabbani

AbstractVitrinite reflectance (VR) is considered the most used maturity indicator of source rocks. Although vitrinite reflectance is an acceptable parameter for maturity and is widely used, it is sometimes difficult to measure. Furthermore, Rock-Eval pyrolysis is a current technique for geochemical investigations and evaluating source rock by their quality and quantity of organic matter, which provide low cost, quick, and valid information. Predicting vitrinite reflectance by using a quick and straightforward method like Rock-Eval pyrolysis results in determining accurate and reliable values of VR with consuming low cost and time. Previous studies used empirical equations for vitrinite reflectance prediction by the Tmax data, which was accompanied by poor results. Therefore, finding a way for precise vitrinite reflectance prediction by Rock-Eval data seems useful. For this aim, vitrinite reflectance values are predicted by 15 distinct machine learning models of the decision tree, random forest, support vector machine, group method of data handling, radial basis function, multilayer perceptron, adaptive neuro-fuzzy inference system, and multilayer perceptron and adaptive neuro-fuzzy inference system, which are coupled with evolutionary optimization methods such as grasshopper optimization algorithm, bat algorithm, particle swarm optimization, and genetic algorithm, with four inputs of Rock-Eval pyrolysis parameters of Tmax, S1/TOC, HI, and depth for the first time. Statistical evaluations indicate that the decision tree is the most precise model for VR prediction, which can estimate vitrinite reflectance precisely. The comparison between the decision tree and previous proposed empirical equations indicates that the machine learning method performs much more accurately.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250028 ◽  
Author(s):  
K. SUBRAMANIAN ◽  
S. SURESH

We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object level, and hence are used to describe the human action in McFIS classifier. McFIS classifier and its sequential learning algorithm is developed based on the principles of self-regulation observed in human meta-cognition. McFIS decides on what-to-learn, when-to-learn and how-to-learn based on the knowledge stored in the classifier and the information contained in the new training samples. The sequential learning algorithm of McFIS is controlled and monitored by the meta-cognitive components which uses class-specific, knowledge based criteria along with self-regulatory thresholds to decide on one of the following strategies: (i) Sample deletion (ii) Sample learning and (iii) Sample reserve. Performance of proposed McFIS based human action recognition system is evaluated using benchmark Weizmann and KTH video sequences. The simulation results are compared with well known SVM classifier and also with state-of-the-art action recognition results reported in the literature. The results clearly indicates McFIS action recognition system achieves better performances with minimal computational effort.


2015 ◽  
Vol 8 (1) ◽  
pp. 369-384 ◽  
Author(s):  
K. Ramesh ◽  
A. P. Kesarkar ◽  
J. Bhate ◽  
M. Venkat Ratnam ◽  
A. Jayaraman

Abstract. The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and ANFIS) has limited success.


Sign in / Sign up

Export Citation Format

Share Document