scholarly journals Bio-statistical evaluation of cultural conditions on industrial textile dye decolourisation using a native bacterium Micrococcus endophyticus (ES37)

2015 ◽  
Vol 5 (4) ◽  
pp. 557-568
Author(s):  
P. M. Ayyasamy ◽  
Suresh S. S. Raja ◽  
B. Subashni ◽  
R. Palanivelan

An indigenous dye-decolourising bacterium Micrococcus endophyticus (ES37) was isolated from dye contaminated soil and identified by 16S rDNA sequencing. The bacterial strain ES37 exhibited 97.19% of dye removal capacity in Luria-Bertani broth composition within 48 h, while the culture containing yeast extract showed 53.4% decolourisation in 72 h. In the absence of carbon and nitrogen sources, the bacterial strain failed to decolourise the dye, even on extended incubation. The effect of environmental factors on decolourisation was investigated by Plackett–Burman design and the significant parameters were lactose, yeast extract and pH. Optimisation of these factors was done by response surface methodology with central composite design; the decolourisation ranged from 0.43 to 77.49%. The optimised levels of lactose, yeast extract and pH were found to be 0.85% (w/v), 0.71% (w/v) and 7.5%, respectively. Under the optimal conditions, decolourisation of remazol golden yellow by ES37 strain was 81.61%, which was in agreement with the predicted value of 79.99%. These findings revealed the interactions and importance of environmental factors on dye decolourisation using native bacteria and also their standard point for an effective dye removal process.

2020 ◽  
Vol 2 (3) ◽  
pp. 51-60
Author(s):  
Palanivelan Ramachandran ◽  
Ayyasamy Pudukkadu Munusamy ◽  
Ramya Suseenthar

The dye removal bacteria Brevibacillus laterosporus (TS5) was isolated from dye contaminated soil, and it’s identified by 16S rDNA sequencing method. The prospective bacterial strain exhibited a highest decolorization (97.8%) in Luria-Bertani broth medium. Among the operational factors, Plackett-Burman design, experimental results indicated that pH, incubation period, and yeast extract significantly contributed for the dye decolorization. Also, dye concentration, starch, temperature, and inoculum size noted as insignificant factors on dye decolorization. Central composite design applied for optimization of important factors to enhance the dye decolorization by Brevibacillus laterosporus (TS5). The optimal values of significant factors were determined by the Response surface methodology (RSM) as follows: 0.60% (w/v) yeast extract, 7.23 pH and 61.45 hrs incubation period, which assisted for Brevibacillus laterosporus (TS5) to attain 90.66% dye removal. Brevibacillus laterosporus (TS5) showed 90.08% decolorization in validation experiments by the support of optimal factors, and implies that explored strain could be a suitable candidate for bioremediation of dye containing effluents.


2009 ◽  
Vol 3 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Joo Shun Tan ◽  
Ramakrishnan Nagasundara Ramanan ◽  
Siti Nor Ani Azaman ◽  
Tau Chuan Ling ◽  
Mustapha Shuhaimi ◽  
...  

The influence of different carbon and nitrogen sources on growth of recombinant Escherichia coli and human interferon-α2b (IFN-α2b) production in periplasmic space was studied in shake flask culture. A statistical method based on Plackett-Burman design was used to screen the main medium components that greatly influenced the performance of the fermentation process. The optimization of medium was performed using response surface methodology (RSM) where three critical factors (glucose, yeast extract and peptone) were optimized using central composite design. The highest yield of periplasmic recombinant human interferon-α2b (PrIFN-α2b) (335.8 μg/L) was predicted to be obtained in optimized medium containing 5.47 g/L glucose, 55.24 g/L yeast extract and 42.27 g/L peptone.. The production of IFN-α2b in periplasmic space in optimized medium was about 2.5, 11.7 and 124.4 times higher than Terrific broth (TB), Luria-Bertani (LB), and minimal medium (M9), respectively.


Author(s):  
Seunghye Park ◽  
A-Leum Kim ◽  
Yoon-Kyung Hong ◽  
Ji-Hwan Shin ◽  
Se-Hwan Joo

Abstract Background Various bacteria promote plant root growth in the rhizosphere, as a measure of securing and enlarging their ecological niche. These interactions are mediated by plant growth regulators (PGRs) such as auxin, and indole-3-acetic acid (IAA) is one of the physiologically active auxin. In this study, we isolated an unusual bacterial strain from food process waste with high efficiency and demonstrated its effects on plant rooting and early-stage growth. Results The efficiency of this bacterial strain in producing IAA was 16.6 mg/L/h in Luria-Bertani broth containing 0.05% l-tryptophan (Trp) at room temperature (24 ± 2 °C). Its IAA production was highly dependent on the presence of precursor, Trp. This bacterium was identified as Ignatzschineria sp. by 16S rDNA sequencing. Its bacterial culture supernatant (BCS) enhanced plant root initiation, root growth, and plant growth in the early stages. The root mass formed BCS-treated in apple mint cuttings was twofold of that formed in the control. The root number and length were 46% and 18% higher, respectively, in BCS-treated chrysanthemum cuttings than in the control. Conclusions These results show that the BCS of Ignatzschineria sp. CG20001 isolate obtained in this study can be used for agricultural applications. In addition, the novelty of this strain makes it a valuable genetic resource for biotechnological applications.


Author(s):  
Abdallah Reghioua ◽  
Djamel Barkat ◽  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Abdullah A. Al-Kahtani ◽  
...  

Author(s):  
Florencia Ruscasso ◽  
Brenda Bezus ◽  
Gabriela Garmendia ◽  
Silvana Vero ◽  
Gustavo Curutchet ◽  
...  

2012 ◽  
Vol 49 (3/4) ◽  
pp. 251
Author(s):  
Aracélis Ferreira Da Silva ◽  
Classius Ferreira Da Silva ◽  
Leila Peres

2017 ◽  
Vol 90 (2) ◽  
pp. 284-291
Author(s):  
Mahdieh Namvar-Mahboub ◽  
Soudabeh Ansari ◽  
Fatemeh Ahsani ◽  
Touba Tamoradi

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Gizele Cardoso Fontes ◽  
Priscilla Filomena Fonseca Amaral ◽  
Marcio Nele ◽  
Maria Alice Zarur Coelho

In order to improve biosurfactant production byYarrowia lipolyticaIMUFRJ 50682, a factorial design was carried out. A24full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone) on maximum variation of surface tension (ΔST) and emulsification index (EI). The best results (67.7% of EI and 20.9 mNm−1ofΔST) were obtained in a medium composed of 10 g 1−1of ammonium sulfate and 0.5 g 1−1of yeast extract. Then, the effects of carbon sources (glycerol, hexadecane, olive oil, and glucose) were evaluated. The most favorable medium for biosurfactant production was composed of both glucose (4% w/v) and glycerol (2% w/v), which provided an EI of 81.3% and aΔST of 19.5 mN m−1. The experimental design optimization enhancedΔEI by 110.7% andΔST by 108.1% in relation to the standard process.


2016 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and organic and ionic composition) as close to their original habitat as possible. Additionally, the medium should also enable high cell density to be obtained - needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally-relevant composition (lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was attained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl serve as primary carbon and nitrogen sources for this phase of growth. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which was in the range conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document