A novel approach in numerical simulation of contaminant removal by air sparging

2007 ◽  
Vol 7 (3) ◽  
pp. 163-170
Author(s):  
N. Jacimovic ◽  
T. Hosoda ◽  
M. Ivetic ◽  
K. Kishida

The paper presents a mechanistic/deterministic model for simulation of mass removal during air sparging. From the point of numerical modeling, there are two issues considering air sparging: modeling of air flow and distribution and modeling of mass transport and transfer. Several processes, which are commonly neglected, such as air channeling and pollutant advection by the water phase, are taken into account. The numerical model presented in this paper considers all relevant for mass transfer during the air sparging. Model includes hydrodynamics of air and water phase; calculated air volume content is divided into a number of air channels surrounded by the water phase, which is divided into two compartments. First compartment is immobile and it is in contact with air phase, while the second compartment is mobile. This “mobile-immobile” formulation is a common approach for description of solute transport by groundwater. Mass transfer between two water compartments is modeled as a first order kinetic, where the mass transfer coefficient, representing diffusion and advection in the water phase towards the air channels, is parameter needed to be calibrated. Sorption for both water compartments is considered. The adopted model of contaminant evaporation at the air-water interface is verified by comparison with experimental results available from published sources. Model is used for simulation of two-dimensional air sparging laboratory experiment. Good overall agreement is observed. It is showed that the efficiency of air sparging can be influenced by natural groundwater flow.

2021 ◽  
Vol 402 ◽  
pp. 123564
Author(s):  
Long Xu ◽  
Yongsheng Wang ◽  
Fusheng Zha ◽  
Qiong Wang ◽  
Bo Kang ◽  
...  

2008 ◽  
Vol 152 (3) ◽  
pp. 1098-1107 ◽  
Author(s):  
Keh-Ping Chao ◽  
Say Kee Ong ◽  
Mei-Chuan Huang

2017 ◽  
Vol 5 (43) ◽  
pp. 22506-22511 ◽  
Author(s):  
Jing Wang ◽  
Zhenyu Li ◽  
Na Hu ◽  
Lizhi Liu ◽  
Chuanhui Huang ◽  
...  

A geometry-induced effect overcomes diffusion constraints to enhance mass transfer and decontamination, presenting a novel approach to water purification.


2022 ◽  
Vol 9 ◽  
Author(s):  
Kai Wu ◽  
Zan Li ◽  
Zhibin Liu ◽  
Songyu Liu

This work provides a three-dimensional discrete element simulation (DEM) model to study the air sparging technology. The simulations have taken into account the multi-phases of bubble (gas) - fluid (water) - soil (solid) particles. Bubbles are treated as discrete individual particles, with buoyancy and drag forces applied to bubbles and soil particles. The trajectory of each discrete bubble particle can be tracked using the discrete element model. It is found that the diffusion of the whole bubble is inverted conical though the motion behavior of a single bubble particle is random. Furthermore, the distribution of the radius of influence (ROI) is not uniform. The bubbles become more concentrated as in the center of the inverted cone. The number of bubbles dissipated from the water surface is normally distributed. The DEM simulation is a novel approach to studying air sparging technology that can provide us a deeper insight into bubble migration at the microscopic level.


Volume 1 ◽  
2004 ◽  
Author(s):  
Tara M. Dalton ◽  
David McGuire ◽  
Mark R. Davies

In this paper an investigative study of the relationship between mass and momentum transport, which have a mutual dependence, is presented. Mass transfer is an important design consideration in engineering processes such as evaporation, chemical reactions, corrosion and mixing. The effect that Reynolds number and distance from the leading edge has on mass transport from fluid to fluid interface on flat plate geometry is examined. A concentration profile is developed above a surface by passing airflow across the plate containing a well of ethanol. The rate of mass transfer is obtained from the concentration profile produced as the ethanol vapour diffuses in the airflow. Measurements are taken using the non-intrusive optical technique of Electronic Speckle Pattern Interferometry (ESPI), which has not been applied in this manner before. This novel approach offers the ability to measure in real time the mass transfer rate. A phase-shifting algorithm is also employed to give whole field measurements. The experimental results compare well to the theoretical prediction, showing that as expected the Sherwood number increases with increasing Reynolds number.


Author(s):  
P. W. Li ◽  
S. P. Chen ◽  
M. K. Chyu

In order to improve the power output of a fuel cell, a novel approach for gas delivery and mass transfer enhancement in a gas distributor is proposed. A model analyzing the power output against the dimensions of a novel gas delivery channel and current collector is also presented. Experimental study for some proton-exchange-membrane fuel cells and numerical analysis for a planar type solid oxide fuel cell are carried out. Significant improvement of power output was obtained for the newly designed fuel cells compared to conventional ones. Both the experimental results and modeling analysis are of great significance to the design of fuel cells.


Sign in / Sign up

Export Citation Format

Share Document