Polyvalent fingerprint based molecular surveillance methods for drinking water supply systems

2008 ◽  
Vol 8 (5) ◽  
pp. 527-532 ◽  
Author(s):  
K. Henne ◽  
L. Kahlisch ◽  
J. Draheim ◽  
I. Brettar ◽  
M. G. Höfle

Despite the relevance for public health, surveillance of drinking water supply systems (DWSS) in Europe is mainly achieved by cultivation based detection of indicator bacteria. The study presented here demonstrates the use of molecular analysis based on fingerprints of DNA extracted from drinking water bacteria as a valuable monitoring tool of DWSS and was exemplified for a DWWS in Northern Germany. The analysis of the bacterial community of drinking water was performed by a set of 16S rRNA gene based fingerprints, sequence analysis of relevant bands and phylogenetic assignment of the 16S rRNA sequences. We assessed the microflora of drinking water originating from two reservoirs in the Harz Mountains. The taxonomic composition of the bacterial communities from both reservoirs was very different at the species level reflecting the different limnological conditions. Detailed analysis of the seasonal community dynamics of the tap water revealed a significant influence of both source waters on the composition of the microflora and demonstrated the relevance of the raw water microflora for the drinking water reaching the consumer. According to our experience, molecular analysis based on fingerprints of different degrees of resolution can be considered as a valuable monitoring tool of DWSS.

2011 ◽  
Vol 61 (3) ◽  
pp. 549-553 ◽  
Author(s):  
Erika M. Tóth ◽  
Zsuzsa Kéki ◽  
Judit Makk ◽  
Zalán G. Homonnay ◽  
Károly Márialigeti ◽  
...  

Three Gram-positive, rod-shaped bacterial strains were isolated from the drinking water supply system of the Hungarian capital, Budapest. Phylogenetic analysis on the basis of 16S rRNA gene sequence comparison revealed that the isolates represented a distinct cluster within the clade of the genus Nocardioides and were most closely related to Nocardioides pyridinolyticus OS4T, Nocardioides aquiterrae GW-9T, Nocardioides sediminis MSL-01T and N. hankookensis DS-30T. The peptidoglycan based on ll-2,6-diaminopimelic acid, the major menaquinone MK-8(H4), the cellular fatty acid profile with iso-C16 : 0 and anteiso-C17 : 0 as predominating components and the DNA G+C content of 71.4 mol% (strain 1RaM5-12T) were consistent with the affiliation of the isolates to the genus Nocardioides. Because of differences in physiological characteristics, matrix-assisted laser-desorption/ionization time-of-flight mass spectra of protein extracts, PvuII RiboPrinter patterns and 96.1 % 16S rRNA gene sequence similarity between strain 1RaM5-12T and its closest phylogenetic neighbour, N. pyridinolyticus OS4T, a novel species, Nocardioides hungaricus sp. nov., is proposed. The type strain is 1RaM5-12T (=DSM 21673T =NCAIM 02330T).


2019 ◽  
Vol 91 (5) ◽  
pp. 441-454
Author(s):  
Henry Ricca ◽  
Vasanthadevi Aravinthan ◽  
Gnanamanikam Mahinthakumar

Author(s):  
Wenjin Xue ◽  
Christopher W. K. Chow ◽  
John van Leeuwen

Abstract The bacterial regrowth potential (BRP) method was utilised to indirectly measure the assimilable organic carbon (AOC) as an indicator for the assessment of the microbial regrowth potential in drinking water distribution systems. A model using various microbial growth parameters was developed in order to standardise the experimental interpretation for BRP measurement. This study used 82 experimental BRP data sets of water samples collected from the water treatment plant to locations (customer taps) in the distribution system. The data were used to model the BRP process (growth curve) by a data fitting procedure and to obtain a best-fitted equation. Statistical assessments and model validation for evaluating the equation obtained by fitting these 82 sets of data were conducted, and the results show average R2 values were 0.987 for treated water samples (collected at the plant prior to chlorination) and 0.983 for tap water (collected at the customer taps). The F values obtained from the F-test are all exceeded their corresponding F critical values, and the results from the t-test also showed a good outcome. These results indicate this model would be successfully applied in modelling BRP in drinking water supply systems.


2017 ◽  
Vol 14 (10) ◽  
pp. 1031-1037 ◽  
Author(s):  
Ljiljana Zlatanovic ◽  
Andreas Moerman ◽  
Jan Peter van der Hoek ◽  
Jan Vreeburg ◽  
Mirjam Blokker

Sign in / Sign up

Export Citation Format

Share Document