Influence of particle size and operating parameters on virus ultrafiltration efficiency

2011 ◽  
Vol 11 (1) ◽  
pp. 31-38
Author(s):  
Angayar K. Pavanasam ◽  
Ali Abbas ◽  
Vicki Chen

In water treatment, virus removal using ultrafiltration is a major step towards better water quality. In this paper, we study virus filtration efficiency using surrogate virus particles and via statistical surface-response approach. We focus on the effect of particle size (20–100 nm range) as a key factor along with the effects of transmembrane pressure (20–60 kPa range) and feed flowrate (0.3–1.0 L/F;min range) on the filtration virus removal efficiency (LRV). The particle size is shown to impart a great deal of influence on surrogate particle removal. The effect of particle-to-pore-size ratio is reported for comparison of membrane molecular weight cut off (MWCO) performance. It was shown experimentally and through the developed empirical regression model that transmembrane pressure plays a major role in controlling the filtration efficiency along with flowrate. In the studied experimental range, higher LRV values are obtained at lower transmembrane pressure (20 kPa) and at higher feed flowrate (1 L/F;min). Further the effect on LRV of the interaction between transmembrane pressure and particle size seems to be more significant than that of the interaction of flowrate with particle size.

1998 ◽  
Vol 38 (4-5) ◽  
pp. 481-488 ◽  
Author(s):  
D. Y. Kwon ◽  
S. Vigneswaran

The effect of particle size and ionic strength of the feed suspension on critical flux was studied. The critical flux was defined in two different ways (strong and mild definition). The fouling, the increase of resistance (which is the basis of the mild definition of the critical flux) was relatively sensitive to the deposition of particles of 0.46 μm on the membrane of 0.2 μm mean pore. On the other hand, the deposition of large particles of 3.2 μm to a certain value on the membrane surface of 0.2 μm mean pore did not lead to the increase in resistance. In case of 11.9 μm particles, the transmembrane pressure did not increase even with significant amount of deposition of particles. The ionic strength of suspension had significant effect on the critical flux. For an ionic strength less than 1×10−1.5 M, there was a decrease in the critical flux. This could be due to the dense layer of deposit which is the result of less diffuse layer thickness of particles. Above this ionic strength, a significant increase in critical flux was noticed which may be due to the aggregation of particles.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

1951 ◽  
Vol 10 (4) ◽  
pp. 867-874 ◽  
Author(s):  
B. E. Sheffy ◽  
Carlos Acevedo Gallegos ◽  
R. H. Grummer ◽  
P. H. Phillips ◽  
G. Bohstedt

Sign in / Sign up

Export Citation Format

Share Document