Contributions of spatial, temporal, and treatment impacts on natural organic matter character using fluorescence-based measures

2015 ◽  
Vol 15 (3) ◽  
pp. 589-598
Author(s):  
Nicolás M. Peleato ◽  
Robert C. Andrews

The potential application of fluorescence spectroscopy for monitoring of organic matter concentration and character at four water treatment facilities was investigated. Results are presented showing impacts on natural organic matter (NOM) due to intake location on the same water body and from individual unit processes including ozonation, granular-activated carbon filtration, and coagulation/flocculation. For validation and comparison of fluorescence methods, organic matter was quantified and characterized using liquid chromatography-organic carbon detection (LC-OCD). Principal component analysis (PCA) and parallel factors analysis were used for dimensionality reduction and to represent individual organic components observed through fluorescence excitation-emission matrices. Fluorescence results generally agreed with LC-OCD characterization, indicating that complete treatment reduced organic concentrations and preferential removal of humic-like material was associated with coagulation/flocculation. PCA results indicated higher concentrations of humic-like material at the Island water treatment plant intake that was not well reduced by inline polyaluminum chloride coagulation and direct filtration. Through fluorescence spectroscopy, ozonation increased Rayleigh scattering, which is correlated to small colloidal/particulate concentrations. Full-scale results from four water treatment plants presented demonstrate that fluorescence methods can characterize NOM, providing similar identification of trends to LC-OCD, with possible online application and use in real-time water treatment process control.


2020 ◽  
Vol 81 (8) ◽  
pp. 1786-1796 ◽  
Author(s):  
Sikelelwa N. Ndiweni ◽  
Michael Chys ◽  
Nhamo Chaukura ◽  
Stijn W. H. Van Hulle ◽  
Thabo T. I. Nkambule

Abstract The increase of fluorescent natural organic matter (fNOM) fractions during drinking water treatment might lead to an increased coagulant dose and filter clogging, and can be a precursor for disinfection by-products. Consequently, efficient fNOM removal is essential, for which characterisation of fNOM fractions is crucial. This study aims to develop a robust monitoring tool for assessing fNOM fractions across water treatment processes. To achieve this, water samples were collected from six South African water treatment plants (WTPs) during winter and summer, and two plants in Belgium during spring. The removal of fNOM was monitored by assessing fluorescence excitation–emission matrices datasets using parallel factor analysis. The removal of fNOM during summer for South African WTPs was in the range 69–85%, and decreased to 42–64% in winter. In Belgian WTPs, fNOM removal was in the range 74–78%. Principal component analysis revealed a positive correlation between total fluorescence and total organic carbon (TOC). However, TOC had an insignificant contribution to the factors affecting fNOM removal. Overall, the study demonstrated the appearance of fNOM in the final chlorinated water, indicating that fNOM requires a customised monitoring technique.



2015 ◽  
Vol 57 (20) ◽  
pp. 9061-9069
Author(s):  
Sanghyun Jeong ◽  
Tien Vinh Nguyen ◽  
Saravanamuthu Vigneswaran ◽  
Jaya Kandasamy ◽  
Dharma Dharmabalan


2013 ◽  
Vol 51 (31-33) ◽  
pp. 6288-6298 ◽  
Author(s):  
Jei-cheol Jeon ◽  
Chang-Hyun Jo ◽  
Ilhwan Choi ◽  
Soon-Buhm Kwon[a] Ennkyung Jang ◽  
Tae-Mun Hwang




2011 ◽  
Vol 11 (6) ◽  
pp. 668-674 ◽  
Author(s):  
B. Q. Zhao ◽  
C. P. Huang ◽  
S. Y. Chen ◽  
D. S. Wang ◽  
T. Li ◽  
...  

Natural organic matter (NOM) plays a significant role in the fouling of ultrafiltration membranes in drinking water treatment processes. For a better understanding of the interaction between fractional components of NOM and polysulfone (PS) ultrafiltration membranes used for drinking water treatment, fouling and especially the physically irreversible fouling of natural organic matter were investigated. Resin fractionation, fluorescence excitation–emission matrix (EEM) spectroscopy, fourier transform infrared spectroscopy (FTIR), contact angle and a scanning electron microscope (SEM) were employed to identify the potential foulants. The results showed that humic acid and fulvic acid of small size were likely to permeate the membrane, while the hydrophobic fraction of humic and fulvic acid and aromatic proteins tended to be rejected and retained. Organic compounds such as proteins, humic substances, and polysaccharide-like materials, were all detected in the fouling layer. The physically irreversible fouling of the PS membrane seemed to be mainly attributed to the hydrophobic fraction of humic substances.





2017 ◽  
Vol 17 (5) ◽  
pp. 1287-1297
Author(s):  
S. S. Marais ◽  
E. J. Ncube ◽  
T. A. M. Msagati ◽  
B. B. Mamba ◽  
T. I. Nkambule

In its natural environment, natural organic matter (NOM) is not problematic. However, during water treatment NOM does affect water quality specifically during the disinfection step, where if NOM is present it reacts with disinfectants resulting in the formation of disinfection by-products. To emphasize the importance of NOM monitoring during potable water treatment this study aimed to characterize NOM and evaluate NOM removal by a conventional water treatment plant considering seasonal trends. NOM was characterized by making use of NOM polarity and specific ultraviolet absorbance. NOM removal was monitored with high-performance size exclusion chromatography, dissolved organic carbon (DOC) and UV254 analyses. The polarity rapid assessment method indicated that the hydrophobic and hydrophilic NOM fractions within the surface water increased during a period of heavy rain when floods occurred, but conversely decreased during an average rain season. Although NOM character showed variability during the 5-year study period, seasonal relationship during high and low flow seasons between aromatic NOM and total trihalomethane (TTHM) formation was not evident. Aromatic NOM was not the only precursor to TTHM formation, which stresses the need to implement advanced NOM characterization techniques during NOM monitoring to study reactivity of the individual NOM fraction with the disinfectant used at the water treatment plant.



Sign in / Sign up

Export Citation Format

Share Document