scholarly journals Evaluation of service pressure regulation strategy on the performance of a rural water network based on pulse demand; using the method of characteristics

Author(s):  
Saeid Mohammadzade Negharchi ◽  
Rouzbeh Shafaghat

Abstract Reducing the occurrence of pipe bursts, reducing leakage, and reducing energy consumption are the three main goals in implementing pressure control programs in water distribution networks. Service Pressure Regulation Strategy is an evolved approach that encompasses all goals of pressure management. This paper has investigated this approach in a rural network with hydraulic complexities as a case study so that some parts of the network have excess pressure and other low pressure. A computer code based on the Method of Characteristics (MOC) has been developed for network hydraulic analysis. The generated code analyzes unsteady flow, pressure-driven demand analysis, and dynamic adjustment of pressure control valves based on the target node. Also, the experimental results of a laboratory network have been applied to validate and calibrate the numerical simulation. In addition, by measuring the flow rate and pressure of the network and the results of the MNF method, three consumption patterns were used to generate pulsed nodal demands. Studies show that creating Pressure-Management Areas by hydraulic analysis by MOC will determine the best control strategies. The mean pressure has decreased 54% by applying this strategy. Furthermore, the average fluctuations of pressure have reduced from 9.7 meters to 3.5 meters.

2017 ◽  
Vol 18 (3) ◽  
pp. 778-789 ◽  
Author(s):  
S. Parra ◽  
S. Krause ◽  
F. Krönlein ◽  
F. W. Günthert ◽  
T. Klunke

Abstract Pressure reducing valves (PRVs) are used in water distribution networks (WDNs) for pressure control and water loss reduction. In this study, a system composed of a PRV and a pump as turbine (PAT) in combination with intelligent pressure management is proposed and its performance is analysed experimentally. For this, data analysis using hydraulic modelling and extensive experimentation for a case study in Germany was performed. During the laboratory tests, the pressure at the critical point of the system could be successfully maintained at the selected value at variable discharges during a characteristic day, as a result of the advanced pressure modulation. Additionally, up to 2.3 kW of electrical energy were recovered, when the applied PAT was operating under full load, with a maximum total net system efficiency of 40%. Furthermore, the proposed pressure management was found to increase the water savings by up to 16% compared to conventional PRVs. This study concludes that the PAT-PRV-system may be suitable in WDNs with high differences in altitude, high operational pressures and high demand variability. For its application, the benefits and the investment costs, as well as the seasonal flow and pressure variations in the WDN should be analysed in detail.


Water ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 309 ◽  
Author(s):  
Marco Sinagra ◽  
Vincenzo Sammartano ◽  
Gabriele Morreale ◽  
Tullio Tucciarelli

Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 26
Author(s):  
Riccardo Zarbo ◽  
Valentina Marsili ◽  
Stefano Alvisi ◽  
Marco Franchini

Pressure reducing valves (PRVs) effectiveness for water distribution networks’ (WDNs’) optimal pressure management is proven, but problems and operational limitations have been highlighted by some recent studies. In this work, the functioning of a piston-actuated pressure reducing valve (PA-PRV), subjected to low flow regimes, is investigated by means of a laboratory test set. The results obtained highlight that the PA-PRV tends not to respect the imposed set-point value, and can present an unstable behaviour, characterised by significant pressure oscillations under some flow-rate conditions.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1732
Author(s):  
Thapelo C. Mosetlhe ◽  
Yskandar Hamam ◽  
Shengzhi Du ◽  
Eric Monacelli

Pressure control in water distribution networks (WDNs) provides an avenue for improving both their sustainability and reliability. The complexities of the networks make the problem more challenging as various situational operations must be accounted for to ensure that the entire system performs under recommended conditions. In general, this problem is addressed by the installation of pressure reducing valves (PRVs) in WDNs and determining their appropriate settings. Researchers have proposed the utilization of several control techniques. However, the limitations of both computational and financial resources have compelled the researchers to investigate the possibility of limiting the PRVs while ensuring their control is sufficient for the entire system. Several approaches have been put forward to mitigate this sub-problem of the pressure control problem. This paper presents a review of existing techniques to solve both the localization of PRVs and their control problems. It dwells briefly on the classification of these methods and subsequently highlights their merits and demerits. Despite the available literature, it can be noted that the solution methods are yet to be harmonized. As a result, various avenues of research areas are available. This paper further presents the possible research areas that could be exploited in this domain.


Author(s):  
Attila Bibok ◽  
Roland Fülöp

Pressure management is a widely adopted technique in the toolset of drinking water distribution system operators. It has multiple benefits, like reducing physical losses in pipe networks with excessive leakage, prolong the expected lifetime of the pipes and protecting home appliances from unacceptably high pressure. In some cases, even legislation compliance can be the motivation behind pressure management: It is mandatory to supply water at the customer’s connection between 1.5 and 6.0 bar in Hungary since 2011. Diaphragm pressure reducing valves are widespread in the drinking water distribution networks. Although, their sensitivity for gas pocket accumulation in the valve house makes hydraulic calibration of these pressure managed areas a challenging task for hydraulic modelers and network operators. This is especially true when more than one inlet is used to supply the same area in order to increase resilience and flow capacity.This paper investigates the hydraulic properties of pressure reduced areas with multiple inlet points. Model calibration using a single valve and minor loss was found insufficient because the additional pressure loss referenced to the pressure setting has a non-quadratic relationship with flow-rate on the discharge side under real-life circumstances. This phenomenon can be handled by using a PRV (pressure reducing valve) + GPV (general purpose valve) in series.


Sign in / Sign up

Export Citation Format

Share Document