scholarly journals Flexible and deterministic household water saving under water demand uncertainty: existing water distribution system and sanitary sewer perspectives

Author(s):  
Innocent Basupi

Abstract An integrated method that evaluates conflicting hydraulic performances of water distribution systems (WDSs) and sanitary sewers (SSs) considering water-saving schemes (WSSs) under fixed (deterministic) or uncertain water demands was formulated. WSSs considered include household water-saving fixtures and appliances whose water flows impact water distribution system (WDS) and sanitary sewer (SS) hydraulic performances in different ways. In the proposed flexible approach, a multi-objective optimisation problem was formulated and solved considering trade-offs of three objectives: (1) maximisation of the average cost savings (2) maximisation of the average WDS resilience index and (3) minimisation of the average SS self-cleansing velocity deficit factor. The decision variables include water-saving fixture and appliance capacities that are applied in a deterministic or flexible manner at a household level. The constraints include WDS and SS hydraulic requirements together with decision bounds of the available water-saving scheme capacities. The non-dominated sorting genetic algorithm was used to obtain trade-off solutions. This method was demonstrated in the corresponding WDS and SS network subsystems of Tsholofelo extension in Gaborone, Botswana. The results indicate that WSSs lead to visibly conflicting WDS and SS hydraulic performances. Moreover, considering uncertainty inherent in water demand and the corresponding planning and management of WDSs and SSs provides more sustainable solutions as demand uncertainties unveil.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1163
Author(s):  
Mengning Qiu ◽  
Avi Ostfeld

Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.


Author(s):  
Chalchisa Milkecha ◽  
Habtamu Itefa

This study was conducted generally by aiming assessment of the hydraulic performance of water distribution systems of Addis Ababa Science and Technology University (AASTU). In line with the main objective, this study addressed, (1) pinpointing problems of existing water supply versus demand deficit (2) evaluating the hydraulic performance of water distribution system using water GEMS and (3) recommended alternative methods for improving water demand scenarios. The University’s water supply distribution network layout was a looped system and the flow of water derived by both gravity and pressurized system. The gravity flow served for the academic and administrative staffs whereas the pressurized system of the network fed the students dormitories, cafeteria’s etc. The study revealed the existence of unmet minimum pressure requirement around the student dormitories which accounts 25.64% below the country’s building code standard during the peak hour consumption. The result of the water demand projection showed an increment of 2.5 liter per capita demand (LPCD) in every five years. Hence, first, the university’s water demand was projected and then hydraulic parameters such as; pressure, head loss and velocity were modeled for both the existing and the improved water supply distribution. The finding of the study was recommended to the university’s water supply project and institutional development offices for its future modification and rehabilitation works.


2004 ◽  
Vol 2 (3) ◽  
pp. 137-156 ◽  
Author(s):  
M. M. Aral ◽  
J. Guan ◽  
M. L. Maslia ◽  
J. B. Sautner ◽  
R. E. Gillig ◽  
...  

In a recently completed case-control epidemiological study, the New Jersey Department of Health and Senior Services (NJDHSS) with support from the Agency for Toxic Substances and Disease Registry (ATSDR) documented an association between prenatal exposure to a specific contaminated community water source and leukaemia in female children. An important and necessary step in the epidemiological study was the reconstruction of the historical water supply strategy of the water distribution system serving the Dover Township area, New Jersey. The sensitivity of solutions to: (1) pressure and pattern factor constraints, (2) allowable operational extremes of water levels in the storage tanks, and (3) the non-uniqueness of the water supply solution are analysed in detail. The computational results show that the proposed approach yields satisfactory results for the complete set of monthly simulations and sensitivity analyses, providing a consistent approach for identifying the historical water supply strategy of the water distribution system. Sensitivity analyses indicated that the alternative strategy obtained from the revised objective function and the variation of constraints did not yield significantly different water supply characteristics. The overall analysis demonstrates that the progressive optimality genetic algorithm (POGA) developed to solve the optimization problem is an effective and efficient algorithm for the reconstruction of water supply strategies in water distribution systems.


2013 ◽  
Vol 59 (3) ◽  
pp. 183-188 ◽  
Author(s):  
V.M. Siqueira ◽  
H.M.B. Oliveira ◽  
C. Santos ◽  
R.R.M. Paterson ◽  
N.B. Gusmão ◽  
...  

Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4′,6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.


2019 ◽  
Vol 22 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
P. Veltri

Abstract The current paper reports on a case study investigating water distribution system management in emergency conditions when it is necessary to seal off a zone with isolation valves to allow repair. In these conditions, the pressure-driven analysis (PDA) is considered to be the most efficient approach for the analysis of a water distribution network (WDN), as it takes into account whether the head in a node is adequate to ensure service. The topics of this paper are innovative because, until now, previous approaches were based on the analysis of the network behaviour in normal conditions. In emergency conditions, it is possible to measure the reliable functioning of the system by defining an objective function (OF) that helps to choose the optimal number of additional valves in order to obtain adequate system control. The OF takes into account the new network topology by excluding the zone where the broken pipe is located. The results show that the solution did not improve significantly when the number of valves reached a threshold. The procedure applied to other real case studies seems to confirm the efficiency of the methodology even if further examination of other cases in different conditions is necessary.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1765 ◽  
Author(s):  
Pingjie Huang ◽  
Naifu Zhu ◽  
Dibo Hou ◽  
Jinyu Chen ◽  
Yao Xiao ◽  
...  

This paper proposes a new method to detect bursts in District Metering Areas (DMAs) in water distribution systems. The methodology is divided into three steps. Firstly, Dynamic Time Warping was applied to study the similarity of daily water demand, extract different patterns of water demand, and remove abnormal patterns. In the second stage, according to different water demand patterns, a supervised learning algorithm was adopted for burst detection, which established a leakage identification model for each period of time, respectively, using a sliding time window. Finally, the detection process was performed by calculating the abnormal probability of flow during a certain period by the model and identifying whether a burst occurred according to the set threshold. The method was validated on a case study involving a DMA with engineered pipe-burst events. The results obtained demonstrate that the proposed method can effectively detect bursts, with a low false-alarm rate and high accuracy.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1591 ◽  
Author(s):  
Bałut ◽  
Brodziak ◽  
Bylka ◽  
Zakrzewski

: On the maintenance task list of each water distribution system (WDS) operator, determination of the order of undertaken repairs seems quite a typical task. Characteristics of damages, their localization, and other factors that influence repair sequencing have a sound impact on the execution of such tasks. In the case of the most complex cases where numerous failures of different types occur at the very same time (i.e., due to earthquakes), there is a long list of selection criteria that have to be analyzed to deliver an objectively logical schedule for repair teams. In this article, authors attempt to find out if it is possible to define pipe rankings in having obtained the best factors for defined objective functions (criteria), making it feasible to deliver judicious repair sequencing. For the purposes of this paper, a survey has been carried out. Its conclusions made it possible to propose a method to create rankings of pipes and evaluate them using a selected multicriteria decision method: preference ranking organization method for enrichment evaluation (PROMETHEE). The work was carried out for five different disaster scenarios that had been supplied by ‘The Battle of Post-Disaster Response and Restoration’ organization committee. Obtained results might be further used to finetune this sequencing method of undertaken repairs, while conclusions could be useful to model similar events in WDS when required. This article is an extended paper based on the conference preprint presented at the 1st International Water Distribution Systems Analysis (WDSA)/International Computing & Control for the Water Industry (CCWI) Joint Conference in July 23–25, 2018 in Kingston, Ontario, Canada.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6221
Author(s):  
Jedrzej Bylka ◽  
Tomasz Mróz

The water supply system is one of the most important elements in a city. Currently, many cities struggle with a water deficit problem. Water is a commonly available resource and constitutes the majority of land cover; however, its quality, in many cases, makes it impossible to use as drinking water. To treat and distribute water, it is necessary to supply a certain amount of energy to the system. An important goal of water utility operators is to assess the energy efficiency of the processes and components. Energy assessments are usually limited to the calculation of energy dissipation (sometimes called “energy loss”). From a physical point of view, the formulation of “energy loss” is incorrect; energy in water transport systems is not consumed but only transformed (dissipated) into other, less usable forms. In the water supply process, the quality of energy—exergy (ability to convert into another form)—is consumed; hence, a new evaluation approach is needed. The motivation for this study was the fact that there are no tools for exergy evaluation of water distribution systems. A model of the exergy balances for a water distribution system was proposed, which was tested for the selected case studies of a water supply system and a water treatment station. The tool developed allows us to identify the places with the highest exergy destructions. In the analysed case studies, the highest exergy destruction results from excess pressure (3939 kWh in a water supply system and 1082 kWh in a water treatment plant). The exergy analysis is more accurate for assessing the system compared to the commonly used energy-based methods. The result can be used for assessing and planning water supply system modernisation.


Sign in / Sign up

Export Citation Format

Share Document