Upgrading of Anaerobic Digestion Processes for Night Soil

1986 ◽  
Vol 18 (7-8) ◽  
pp. 249-256 ◽  
Author(s):  
T. Noike ◽  
J. Matsumoto

The upgrading of night soil anaerobic digestion processes was studied by field investigation of the performance of anaerobic digesters in existing night soil treatment plants and by serai-continuous experiments with bench-scale digesters. Both the average monthly amount of collected night soil fed to a digester and the concentration of volatile solids in night soil increased in winter. A good correlation was found to exist between gas production and digestion temperature. The COD removal rate in the first digester was markedly higher than that in the second digester. The stirring period in the first digester in one plant differs from that in the other plant. Stirring the first digester for too long a period reduces the rate of COD removal by the second digester in the two-stage anaerobic digestion process. The first digester should be stirred for more than one hour per day in order to promote gas production. Gas production and CODCr removal rate in the second digester were hardly affected by reductions in retention time ranging from 15 days to 5 days. As night soil contains a large amount of cellulose and other refractory organics, some kind of pretreatment of the night soil fed to the digester may be necessary for the promotion of acidogenesis in the two-phase anaerobic digestion process.

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1157-1166 ◽  
Author(s):  
Tian Cheng Zhang ◽  
Tatsuya Noike

The comparison of one-phase and two-phase anaerobic digestion processes in the characteristics of substrate degradation and the bacterial population levels was investigated by using the chemostat-type reactors to which starch was fed as substrate when both processes were operated under the same experimental conditions. By decreasing the SRTs of both systems from 10.2 d to 5 d, 2.5 d and 1.75 d. it was found that the two-phase system was more stable to the change in pH than one-phase system. The CH4 recovery rates and COD removal rates in the two-phase system increased by 4 to 9% and 3 to 10%. respectively, although the CH4 recovery rate and the COD removal rate in the one-phase system were slightly higher than those in the two-phase system at the SRT of 10.2 d. The concentration of propionate in the effluent of the one-phase system was 30 to 50% higher than that in the two-phase system; while the concentrations of acetate and butyrate in the one-phase system were slightly lower than those in the two-phase one. The enumeration of the bacteria was performed by the MPN method. The population levels of acidogenic bacteria in both systems were in the same order (108 to 1010 MPN/ml). the population levels of hydrogenotrophs were also in the same order as the acidogenic bacteria in the two-phase system, while the population levels of hydrogenotrophs were 10 to 100 fold less than that of acidogenic bacteria in the one-phase system. The number of HAc-utilizing methanogens in the methanogenesis of the two-phase system were 2 to 10 times higher than that in the one-phase system. Therefore, the one-phase system cannot be regarded simply as the sum of acidogenesis and methanogenesis.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 239-248 ◽  
Author(s):  
Sung Ryong Ha ◽  
Dwang Ho Lee ◽  
Sang Eun Lee

Laboratory scale experiments were conducted to develop a mathematical model for the anaerobic digestion of a mixture of night soil and septic tank sludge. The optimum mixing ratio by volume between night soil and septic tank sludge was found to be 7:3. Due to the high solids content in the influent waste, mixed-liquor volatile suspended solids (MLVSS) was not considered to be a proper parameter for biomass concentration, therefore, the active biomass concentration was estimated based on deoxyribonucleic acid (DNA) concentration in the reactor. The weight ratio between acidogenic bacteria and methanogenic bacteria in the mixed culture of a well-operated anaerobic digester was approximately 3:2. The proposed model indicates that the amount of volatile acid produced and the gas production rate can be expressed as a function of hydraulic residence time (HRT). The kinetic constants of the two phases of the anaerobic digestion process were determined, and a computer was used to simulate results using the proposed model for the various operating parameters, such as BOD5 and volatile acid concentrations in effluent, biomass concentrations and gas production rates. These were consistent with the experimental data.


2003 ◽  
Vol 48 (6) ◽  
pp. 255-262 ◽  
Author(s):  
E. Houbron ◽  
A. Larrinaga ◽  
E. Rustrian

This study attempted to investigate the feasibility of volatile fatty acid (VFA) production from coffee pulp hydrolyse, and further to determine the potential of methanization of both the pre-acidified effluent and the coffee wastewater. The experiments were carried out in 2 completely mixed reactors, each one with a working volume of 4 litres. Coffee pulp was used as substrate in the acidogenic reactor and different mixtures of pulper and wash-water and pre-acidified effluent in the methanogenic one. The acidogenic and methanogenic reactors were operated at an organic loading rate of 5 COD g.l-1.d-1 and 0.5 COD g.l-1.d-1. The total, soluble and VFA's effluent COD concentrations of the acidogenic reactor present average values of 57.75, 17.00 and 13.92 g.l-1 respectively. Under these experimental conditions, 23% (COD based) of coffee pulp was hydrolysed with a rate of 1.32 gCOD.l-1.d-1 and the soluble fraction was transformed to VFA's with an acidification efficiency of 82%. Total VFA's concentration reached a value of 13.9 gCOD.l-1, and acetate, propionate, butyrate and valerate represented 52%, 28%, 9% and 11% respectively of the liquid phase COD. In the methanogenic reactor, COD removal and methanization of fresh coffee wastewater, pre-acidified effluent and both combined occur with an efficiency of 85% to 95% respectively, with a characteristic biogas composition of 80% CH4 and 20% CO2. These results show that a humid coffee ‘Beneficio’ processing daily 23 tons of cherry coffee (fresh fruit), equipped with a two stage anaerobic digestion process could generate at least 1,886 CH4 m3.d-1. This represents an increase in methane production by a factor 3 to 5 compared to a ‘Beneficio’ using anaerobic digestion only for the treatment of its wastewater.


2021 ◽  
Vol 3 ◽  
Author(s):  
Eudald Casals ◽  
Raquel Barrena ◽  
Edgar Gonzalez ◽  
Xavier Font ◽  
Antoni Sánchez ◽  
...  

The addition of magnetic nanoparticles to batch anaerobic digestion was first reported in 2014. Afterwards, the number of works dealing with this subject has been increasing year by year. The discovery of the enhancement of anaerobic digestion by adding iron-based nanoparticles has created a multidisciplinary emerging research field. As a consequence, in the last years, great efforts have been made to understand the enhancement mechanisms by which magnetic nanoparticles (NPs) addition enhances the anaerobic digestion process of numerous organic wastes. Some hypotheses point to the dissolution of iron as essential iron for anaerobic digestion development, and the state of oxidation of iron NPs that can reduce organic matter to methane. The evolution and trends of this novel topic are discussed in this manuscript. Perspectives on the needed works on this topic are also presented.


2000 ◽  
Vol 42 (9) ◽  
pp. 41-47 ◽  
Author(s):  
A. Huyard ◽  
B. Ferran ◽  
J.-M. Audic

Regulations for land application of wastewater sludges require the performing of treatment with a high efficiency on pathogens reduction. a reduction of 61% of the Volatile Solids content of the sludge, a reduction of fecal coliform, polio virus and Ascaris egg of 5.5, 4.0 and 2.6 respectively are achieved with a thermmophilic/mesophilic Two Phase Anaerobic Digestion process. According to the EPA 40 CFR 503 regulation, the process produces Class A biosolids and could be recommended as a Process to Further Reduce Pathogens.


Sign in / Sign up

Export Citation Format

Share Document