High Biological Nutrient Removal from Domestic Wastewater in Combination with Phosphorus Recycling

1991 ◽  
Vol 23 (4-6) ◽  
pp. 651-657 ◽  
Author(s):  
J. H. Rensink ◽  
E. Eggers ◽  
H. J. G. W. Donker

Pilot plant studies on biological nutrient removal and using settled domestic waste water have been carried out in combination with phosphorus recycling on the basis of crystallisation of calcium phosphate on sand pellets in a fluidized bed-reactor. The bioreactor had been divided into four zones, respectively anaerobic, aerobic, anoxic and aerobic. To eliminate nitrate sludge recirculation for denitrification, a part of the influent was led to the anoxic zone. In the by-pass of the bioreactor a phostripper tank was incorporated followed by a fluidized bed-reactor. The experiments carried out at low F/M ratios and at a constant and variable influent flow resulted in nearly 100% P-removal. P-total effluent was lower than 0.1 mg P/l. The total nitrogen content in the effluent amounted to an average value of approximately 16 mg N/l.

2003 ◽  
Vol 47 (11) ◽  
pp. 9-15 ◽  
Author(s):  
T. McCue ◽  
R. Shah ◽  
I. Vassiliev ◽  
Y.-H. Liu ◽  
F.G. Eremektar ◽  
...  

The objective of this NSF sponsored research was to provide a controlled comparison of identical continuous flow biological nutrient removal (BNR) processes both with and without prefermentation in order to provide a stronger, more quantitative, technical basis for design engineers to determine the potential benefits of prefermentation to EBPR in treating domestic wastewater. Specifically, this paper focused upon the potential impacts of primary influent prefermentation upon BNR processes treating septic domestic wastewater. This study can be divided into two distinct phases - an initial bench-scale phase which treated septic P-limited (TCOD:TP>40) wastewater and a subsequent pilot-scale phase which treated septic COD-limited (TCOD:TP<40) wastewater. The following conclusions can be drawn from the results obtained to date.•Prefermentation increased both RBCOD, SBCOD and VFA content of septic domestic wastewater.•Prefermentation resulted in increased biological P removal for a highly septic, non-P limited (TCOD:TP<40:1) wastewater. However, in septic, P-limited (TCOD:TP>40:1) wastewater, changes in net P removal due to prefermentation were suppressed by limited P availability, even though P release and PHA content were affected.•Prefermentation increased specific anoxic denitrification rates for both COD and P-limited wastewaters, and in the pilot (COD-limited) study also coincided with greater system N removal.


1998 ◽  
Vol 38 (1) ◽  
pp. 327-334 ◽  
Author(s):  
P. Pavan ◽  
P. Battistoni ◽  
P. Traverso ◽  
A. Musacco ◽  
F. Cecchi

The paper presents results coming from experiments on pilot scale plants about the possibility to integrate the organic waste and wastewater treatment cycles, using the light organic fraction produced via anaerobic fermentation of OFMSW as RBCOD source for BNR processes. The effluent from the anaerobic fermentation process, with an average content of 20 g/l of VFA+ lactic acid was added to wastewater to be treated in order to increase RBCOD content of about 60-70 mg/l. The results obtained in the BNR process through the addition of the effluent from the fermentation unit are presented. Significant increase of denitrification rate was obtained: 0.06 KgN-NO3/KgVSS d were denitrified in the best operative conditions studied. -Vmax shows values close to those typical of the pure methanol addition (about 0.3 KgN-NO3/KgVSS d). A considerable P release (35%) was observed in the anaerobic step of the BNR process, even if not yet a completely developed P removal process.


1999 ◽  
Vol 39 (6) ◽  
pp. 1-11 ◽  
Author(s):  
George A. Ekama ◽  
Mark C. Wentzel

Filamentous bulking and the long sludge age required for nitrification are two important factors that limit the wastewater treatment capacity of biological nutrient removal (BNR) activated sludge systems. A growing body of observations from full-scale plants indicate support for the hypothesis that a significant stimulus for filamentous bulking in BNR systems in alternating anoxic-aerobic conditions with the presence of oxidized nitrogen at the transition from anoxic to aerobic. In the DEPHANOX system, nitrification takes place externally allowing sludge age and filamentous bulking to be reduced and increases treatment capacity. Anoxic P uptake is exploited in this system but it appears that this form of biological excess P removal (BEPR) is significantly reduced compared with aerobic P uptake in conventional BNR systems. Developments in the understanding of the BEPR processes of (i) phosphate accumulating organism (PAO) denitrification and anoxic P uptake, (ii) fermentation of influent readily biodegradable (RB)COD and (iii) anaerobic hydrolysis of slowly biodegradable (SB)COD are evaluated in relation to the IAWQ Activated Sludge Model (ASM) No.2. Recent developments in BEPR research do not yet allow a significant improvement to be made to ASM No. 2 that will increase its predictive power and reliability and therefore it remains essentially as a framework to guide further research.


2018 ◽  
Vol 789 ◽  
pp. 59-63
Author(s):  
Susmardi Masti Casoni ◽  
Chandra Wahyu Purnomo ◽  
Muslikhin Hidayat

The high organic material contained in wastewater released into the environment asresults of various sources of human activities, such as phosphorus, can cause eutrophication. Thestruvite crystallization in an aerated fluidized bed reactor is one of the methods which able toimprove the efficiency of phosphorus removal. In this study, a mixture of synthetic wastewaters andthe MgCl2 solution was treated in a fluidized bed reactor equipped with aeration to produce thestruvite which can be utilized as a slow release fertilizer. Subsequently, the effect of aeration atdifference influent flow rate was investigated to correlate with the changing of phosphorusconcentration in the reactor effluent. The experiments were conducted for 240 minutes with thevariation of aeration are 0.5 L/min to 1.5 L/min; variation of influent flow rate of syntheticwastewater is 150 ml/min to 350 ml/min, with a constant influent flow rate of MgCl2 solution is 50ml/min. These solutions were maintained at the condition of pH 9. The results showed that theoptimal efficiency of phosphor removal which accounted for 82.5% occurred when the aeration rateof 1.5 L/min in the influent flow rate of 150 ml/min. From these findings, it is revealed that theefficiency of P removal in wastewater is obtained by a crystallization process which utilizing anaerated fluidized bed reactor and by increasing the aeration rate and the reactants contact time.


2009 ◽  
Vol 59 (11) ◽  
pp. 2093-2099 ◽  
Author(s):  
H. Lee ◽  
J. Han ◽  
Z. Yun

A lab-scale UCT-type membrane bio-reactor (MBR) was operated for biological nitrogen (N) and phosphorus (P) removal simultaneously. In order to examine biological nutrient removal (BNR) characteristics of MBR, the lab unit was fed with a synthetic strong and weak wastewater. With strong wastewater, a simultaneous removal of N and P was achieved while application of weak wastewater resulted in a decrease of both N and P removal. Recycled nitrate due to the limited organic in weak wastewater operation probably caused a nitrate inhibition in anaerobic zone. In step feed modification with weak wastewater, both N and P removal capability recovered in the system, indicating that the allocation of COD for denitrification at anoxic zone was a key to increase the biological P removal. In addition, the analysis on the specific P uptake rate in anoxic zone demonstrated that denitrifying phosphorus accumulating organism (dPAO) played an important role to remove up to 40% of P along with N. The sludge production characteristics of UCT-type MBR were similar to ordinary activated sludge with BNR capability.


Sign in / Sign up

Export Citation Format

Share Document