Start-Up and Cultivation of A2N Denitrifying Phosphorus and Nitrogen Removal System

2012 ◽  
Vol 610-613 ◽  
pp. 1454-1458
Author(s):  
Ming Fen Niu ◽  
Hong Jing Jiao ◽  
Li Xu ◽  
Yan Yu ◽  
Jian Wei

A2N is two-sludge system, by using the method that first bringing up the cultivation of denitrifying phosphorus removing bacteria (DPB) and nitrification biofilm separately then connecting them, which can start up A2N system successfully. Nitrification biofilm was cultivated in a sequencing batch reactor (SBR). After 30 days, NH4+-N effluent concentration steadily stayed below 0.5mg·L-1.In another SBR, the activated sludge for the enrichment of DPB is from the anaerobic tank, which was firstly operated under anaerobic/aerobic (A/O) condition. After 20 days, PAOs was successfully enriched. Then, the activated sludge was conducted under anaerobic/anoxic/aerobic (A/A/O) condition, maintaining the anaerobic time, gradually increased anoxic time and induced aerobic time. After 30 days DPB was successfully enriched, two phases totally take 50 days. The removal efficiency of total nitrogen and phosphorus are above 85 % and 95 %, so that A2N system was started up successfully.

2012 ◽  
Vol 610-613 ◽  
pp. 1573-1578
Author(s):  
Yu Hong Zhou

Biological removal of nitrogen and phosphorus species from an artificial wastewater was investigated in a sequencing batch reactor ( SBR) by changing operating mode which simulation oxidation ditch aeration realization of point and achieved alternate anoxic/aerobic, The results show that: the total control for 6 h reaction time, including aeration 3 h, stop aeration 3 h, four conditions under the condition of 30 min, 10 min, 5 min, 3 min anoxic/ aerobic alternate of COD, ammonia nitrogen removal not too big effect, TN, TP influence is bigger. COD removal efficiency is above 89% for four modes and effluent COD is lower than 35mg/L.Ammonia nitrogen average removal efficiency is above 90% for four modes and effluent ammonia is less than 5mg/L.Total nitrogen removal rates was 68.71%, 67.70%, 60.36%, 37.27% respectively for four modes. In instantaneous influent, anoxic and aerobic alternating time should not be less than 5min for TN removal. Mode Ⅰto Ⅳ removal efficiency of TP was 23.05%, -2.17%, 1.19%, 43.61% respectively.


2013 ◽  
Vol 781-784 ◽  
pp. 2047-2050
Author(s):  
Xiu Qiong Guan ◽  
Hong Xia Gao ◽  
Tian Xue Lin ◽  
Chun Liu

Sequencing Batch Reactor (SBR) was investigated for the treatment of liquor wastewater in this paper. This study includes the test of start-up of the SBR, running of the reactor by treating the wastewater. During the start-up process the activated sludge was cultured and acclimated. After acclimation the removal efficiency of CODcr can reach around 99%. Following investigations were focused on evaluation of the treatment efficiency and the reactive cycle during running the SBR. The experimental results showed that running parameters of SBR reaction system were Fill 0.5 h, React 10.0 h, Settle 2.0~2.5 h, Drain 0.5h, Idle 4.0h. Under these conditions the removal rate of CODcr can reach 99%. So the performance of SBR for the wastewater was satisfactory as the wastewater had 1400~2000mg/l of CODcr. The cyclic operation of SBR used in this study proved more effective in treating the wastewater.


2012 ◽  
Vol 550-553 ◽  
pp. 2100-2103
Author(s):  
Jun Li ◽  
Xiu Qiong Guan ◽  
Chun Liu

ABSTRACT. SBR (Sequencing Batch Reactor) was investigated for the treatment of OCC pulping wastewater in this paper. This study includes the design of the SBR device and its control system, the test of start-up of the SBR, running of the reactor by treating the wastewater. During the start-up process the activated sludge was cultured and acclimated. After acclimation the removal efficiency of CODcr can reach around 80%. Following investigations were focused on evaluation of the treatment efficiency and the reactive cycle during running the SBR. The experimental results showed that the running parameters of SBR reaction system were Fill 2.0 h, React 12.0 h, Settle 1.0~2.0 h, Drain 0.5h, Idle 4.0h. Under these conditions the removal rate of COD can reach 94%. So the performance of SBR for the wastewater was satisfactory as the wastewater had 1500~2500mg/l of COD. The cyclic operation of SBR used in this study proved more effective in treating the wastewater.


2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoling Zhang ◽  
Fan Zhang ◽  
Yanhong Zhao ◽  
Zhengqun Li

The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON) process were examined in a sequencing batch reactor (SBR) with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN) removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d), respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h) and nonaeration (1 h) was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.


2009 ◽  
Vol 59 (12) ◽  
pp. 2371-2377 ◽  
Author(s):  
Q. Yang ◽  
X. H. Liu ◽  
Y. Z. Peng ◽  
S. Y. Wang ◽  
H. W. Sun ◽  
...  

To obtain economically sustainable wastewater treatment, advanced nitrogen removal from municipal wastewater and the feasibility of achieving and stabilizing short-cut nitrification and denitrification were investigated in a pilot-plant sequencing batch reactor (SBR) with a working volume of 54 m3. Advanced nitrogen removal, from summer to winter, with effluent TN lower than 3 mg/L and nitrogen removal efficiency above 98% was successfully achieved in pulsed-feed SBR. Through long-term application of process control in pulsed-feed SBR, nitrite accumulation reached above 95% at normal temperature of 25°C. Even in winter, at the lowest temperature of 13°C, nitrite was still the end production of nitrification and nitrite accumulation was higher than 90%. On the basis of achieving advanced nitrogen removal, short-cut nitrification and denitrification was also successfully achieved. Compare to the pulse-feed SBR with fixed time control, the dosage of carbon source and energy consumption in pulsed-feed SBR with process control were saved about 30% and 15% respectively. In pulsed-feed SBR with process control, nitrogen removal efficiency was greatly improved. Moreover, consumption of power and carbon source was further saved.


2017 ◽  
Vol 75 (11) ◽  
pp. 2639-2648 ◽  
Author(s):  
Yong Zhang ◽  
Wei-Li Jiang ◽  
Yang Qin ◽  
Guo-Xiang Wang ◽  
Rui-Xiao Xu ◽  
...  

This study aimed to investigate the organic removal efficiency and microbial population dynamics in activated sludge with pressurized aeration. The activated sludge was fed with synthetic wastewater composed of simple carbon source to avoid the effect of complex components on microbial communities. The pressurized acclimation process was conducted in a bench-scale sequencing batch reactor (SBR) under 0.3 MPa gage pressure. Another SBR was running in atmospheric environment as a control reactor, with the same operation parameters except for the pressure. Bacterial diversity was investigated by Illumina sequencing technology. The results showed that the total organic carbon removal efficiency of the pressurized reactor was significantly higher, while the mixed liquor suspended solids concentrations were much lower than those of the control reactor. Moderate pressure of 0.3 MPa had little effect on Alpha-diversity of bacterial communities due to the similar running conditions, e.g., feed water, solids retention time (SRT) and the cyclic change of dissolved oxygen (DO) concentrations. Although the relative percentage of the bacterial community changed among samples, there was no major change of predominant bacterial populations between the pressurized group and the control group. Pressurized aeration would have a far-reaching impact on microbial community in activated sludge when treating wastewaters being unfavorable to the dissolution of oxygen.


2002 ◽  
Vol 46 (9) ◽  
pp. 219-227 ◽  
Author(s):  
S. Murat ◽  
E. Atesş Genceli ◽  
R. Tasşli ◽  
N. Artan ◽  
D. Orhon

The paper evaluates the organic carbon and nitrogen removal performance of the sequencing batch reactor (SBR), technology for tannery wastewater. For this purpose, a pilot-scale SBR was installed on site to treat the plain-settled tannery effluent. The study involved wastewater characterization, start-up and operation of the reactor for carbon and nitrogen removal and model evaluation of system performance. Its removal efficiency was compared with that of the existing continuous-flow activated sludge system providing full treatment to wastewater from the Istanbul Tannery Organized Industrial District.


Sign in / Sign up

Export Citation Format

Share Document