Development of a Pretreatment Program to Improve Biological Treatability of High Strength and Toxic Industrial Wastewater

1994 ◽  
Vol 29 (9) ◽  
pp. 29-37 ◽  
Author(s):  
A. Brenner ◽  
S. Belkin ◽  
A. Abeliovich

A biological treatment process has been suggested as the main treatment stage for a high (organic) strength industrial wastewater stream, discharged by several chemical industries within a large industrial park. Treatability studies have indicated that the wastes contain a fraction of toxic and non-biodegradable organic matter, which limits the implementation of a conventional biological treatment process for the combined wastewater stream. Therefore, an in-plant control program including waste segregation and process-specific pretreatments is proposed. A protocol that enables selection of waste streams amenable to biological treatment and identification of problematic streams requiring pretreatment is presented and demonstrated. It includes simplified laboratory procedures used for chemical and toxicological characterization of source streams originating in various processes. The results can be used for the development of a pretreatment program for problematic waste streams, based upon local small-scale solutions.

2014 ◽  
Vol 953-954 ◽  
pp. 300-303 ◽  
Author(s):  
Fang Yin ◽  
Wu Di Zhang ◽  
Jing Liu ◽  
Hong Yang

The essence of the two phase anaerobic biological treatment process is to place acid bacteria and methane-producing bacteria in two reactors respectively, where it can provide the optimal conditions for their growth and metabolism, allowing them to live up to their maximal activity, which greatly improve processing capacity and efficiency compared to a single-phase anaerobic digestion. The paper start with the two phase anaerobic digestion process, in order to discuss the development direction of high efficient anaerobic digestion system.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 815-825 ◽  
Author(s):  
D. Orhon ◽  
N. Artan ◽  
S. Büyükmurat ◽  
E. Görgün

Textile effluents often contain an array of chemicals with different biodegradation characteristics. Consequently, it is quite difficult to evaluate and interpret the degree of COD removal that can be attained by biological treatment without identifying COD portions that are resistant to biodegradation. This study evaluates the biological treatability of textile wastewaters generated by the knit and wowen fabric finishing category with specific emphasis on the assessment of different residual COD components. A new method is proposed to experimentally measure the initial particulate inert COD. The method is tested to yield a value of 73 mgl-1 for this COD component, corresponding to 16 % of the particulate COD in the textile sample. A previously developed procedure is used to quantify the initial soluble inert COD and the residual COD generated through microbial metabolism during the treatment process. The ratio of the inert fraction to the soluble COD of the textile effluents is found to vary between 0.076 and 0.22. A similar ratio in the range of 0.04 - 0.09 is calculated for the residual microbial products. The kinetic and stoichiometric constants associated with the biodegradable COD are also experimentally measured. The residual components, together with the kinetic information about biodegradable fractions, are used to simulate the performance of activated sludge systems by means of a relationship between the total effluent COD and the sludge age. The results indicate that the residual components practically dominate the effluent COD and seriously challenge related effluent standards.


2018 ◽  
Vol 33 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Long Liang ◽  
Ying Qiao Shi ◽  
Guigan Fang ◽  
Aixiang Pan ◽  
Qinwen Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document