The Effect of Residual COD on the Biological Treatability of Textile Wastewaters

1992 ◽  
Vol 26 (3-4) ◽  
pp. 815-825 ◽  
Author(s):  
D. Orhon ◽  
N. Artan ◽  
S. Büyükmurat ◽  
E. Görgün

Textile effluents often contain an array of chemicals with different biodegradation characteristics. Consequently, it is quite difficult to evaluate and interpret the degree of COD removal that can be attained by biological treatment without identifying COD portions that are resistant to biodegradation. This study evaluates the biological treatability of textile wastewaters generated by the knit and wowen fabric finishing category with specific emphasis on the assessment of different residual COD components. A new method is proposed to experimentally measure the initial particulate inert COD. The method is tested to yield a value of 73 mgl-1 for this COD component, corresponding to 16 % of the particulate COD in the textile sample. A previously developed procedure is used to quantify the initial soluble inert COD and the residual COD generated through microbial metabolism during the treatment process. The ratio of the inert fraction to the soluble COD of the textile effluents is found to vary between 0.076 and 0.22. A similar ratio in the range of 0.04 - 0.09 is calculated for the residual microbial products. The kinetic and stoichiometric constants associated with the biodegradable COD are also experimentally measured. The residual components, together with the kinetic information about biodegradable fractions, are used to simulate the performance of activated sludge systems by means of a relationship between the total effluent COD and the sludge age. The results indicate that the residual components practically dominate the effluent COD and seriously challenge related effluent standards.

1993 ◽  
Vol 28 (2) ◽  
pp. 145-154 ◽  
Author(s):  
F. Germirli ◽  
D. Orhon ◽  
N. Artan ◽  
E. Ubay ◽  
E. Görgün

Some agro-industries generate wastewaters with very high COD concentrations and require two-stage biological treatment Inert or residual organic constituents of these wastewaters, even at very low ratios, play a major role in the compliance of effluent standards. In this study, two strong wastes, citric acid plant effluent and cheese whey were tested for their inert COD content. The experiments showed that the first-phase anaerobic treatment provided a major decrease in the residual COD, but introduced significant amounts of particulate residual COD to the second phase. A newly developed procedure was used for the assessment of the soluble and particulate residual COD.


1994 ◽  
Vol 29 (9) ◽  
pp. 29-37 ◽  
Author(s):  
A. Brenner ◽  
S. Belkin ◽  
A. Abeliovich

A biological treatment process has been suggested as the main treatment stage for a high (organic) strength industrial wastewater stream, discharged by several chemical industries within a large industrial park. Treatability studies have indicated that the wastes contain a fraction of toxic and non-biodegradable organic matter, which limits the implementation of a conventional biological treatment process for the combined wastewater stream. Therefore, an in-plant control program including waste segregation and process-specific pretreatments is proposed. A protocol that enables selection of waste streams amenable to biological treatment and identification of problematic streams requiring pretreatment is presented and demonstrated. It includes simplified laboratory procedures used for chemical and toxicological characterization of source streams originating in various processes. The results can be used for the development of a pretreatment program for problematic waste streams, based upon local small-scale solutions.


1995 ◽  
Vol 32 (12) ◽  
pp. 43-52 ◽  
Author(s):  
E. Görgün ◽  
E. Ubay Çokgör ◽  
D. Orhon ◽  
F. Germirli ◽  
N. Artan

Biological treatability of major agro-industries wastewaters, such as meat processing effluents can only be evaluated with specific emphasis on slowly biodegradable substrate and using a multi-component modelling approach. This paper reviews the framework of the endogenous decay model and summarizes the necessary COD fractionation and the kinetic information to be incorporated in this model as applied to a meat processing effluent. Model interpretations of the respirometric experiments are used to define the fate of slowly biodegradable COD. Behavior of this wastewater in continuous activated sludge systems is studied by model simulations based upon experimental results.


Author(s):  
Jia-Ying He ◽  
Hong-Ling Zhang ◽  
Hong Wang ◽  
Ya-Qi Hu ◽  
Yong Zhang

Abstract The effects of pure oxygen aeration on compositional characteristics of soluble microbial products (SMP) and extracellular polymeric substances (EPS) of the activated sludge acclimated in a sequential batch reactor (SBR) were explored in batch mode. The structure of the extracellular products would change with different aeration methods or aeration rates. The proportion of SMP of most oxygen aerated sludge was less than 10%, while that in air aerated sludge was as high as 30%–40%. The proportion of TB-EPS decreased from 56.95% to 30.63%, and the proportion of LB-EPS increased obviously with the increase of oxygen aeration rate. The contents of the protein (PN) and the polysaccharide (PS) of extracellular products with oxygen aeration were significantly different, and the PN was much higher than PS (p < 0.05). The zeta potential of each component in activated sludge was negative, gradually decreasing with the progress of biological treatment. The fluorescence peaks in SMP, LB-EPS and TB-EPS with pure oxygen aeration were attributed to tryptophan PN-like and humic acid-like fractions. The results showed that the proportion of the components in the extracellular products could be regulated by adjusting the aeration rate and aeration mode, so as to optimize the treatment process of activated sludge.


1992 ◽  
Vol 25 (7) ◽  
pp. 383-394 ◽  
Author(s):  
G. Garuti ◽  
M. Dohanyos ◽  
A. Tilche

Results of a three year experience on a combined anaerobic-anoxic-oxic municipal waste water treatment process - named ANANOX® - are presented. This process demonstrated to be highly efficient, with 89.6% CODt, 89.2% TSS and 81.2% N removal, and a sludge production of only 0.2 kg TSS.kg COD removed−1, a value which is roughly 50% less if compared with traditional nitrification/denitrification processes. Sulphates play a very significant role in the process because, after being reduced in the anaerobic step, where they give a contribution to the organic matter degradation, they are reoxidized in the anoxic step by nitrates, reducing the organic matter need for denitrification. Due to the high dependence of efficiency on temperature, the system proposed has advantageous uses for sewage treatment, particularly in warm climates and in tourist and recreational areas where the population increases during the warm season.


2014 ◽  
Vol 953-954 ◽  
pp. 300-303 ◽  
Author(s):  
Fang Yin ◽  
Wu Di Zhang ◽  
Jing Liu ◽  
Hong Yang

The essence of the two phase anaerobic biological treatment process is to place acid bacteria and methane-producing bacteria in two reactors respectively, where it can provide the optimal conditions for their growth and metabolism, allowing them to live up to their maximal activity, which greatly improve processing capacity and efficiency compared to a single-phase anaerobic digestion. The paper start with the two phase anaerobic digestion process, in order to discuss the development direction of high efficient anaerobic digestion system.


Sign in / Sign up

Export Citation Format

Share Document