Study on Adsorption Behavior of the Perfluorooctanoic Acid and its Potential of Generation from Precursor during Biological Treatment Process in Wastewater Treatment Plants

2012 ◽  
Vol 68 (7) ◽  
pp. III_333-III_340
Author(s):  
Yuji SUZUKI ◽  
Shuhei TANAKA ◽  
Shigeo FUJII ◽  
Chinagarn KUNACHEVA ◽  
Masuhiro HAYASHI ◽  
...  
Author(s):  
Costel-Cătălin Prăjanu ◽  
Daniel Toma ◽  
Cristina-Mihaela Vîrlan ◽  
Nicolae Marcoie

Abstract This paper includes an analysis of the biological treatment process existing within the water supply and sewerage of Iași City. The main objective of biological treatment is the removal of solid organic substances from wastewater, the stabilization of sludge, the reduction of nutrients loads etc. The Iași City Wastewater Treatment Plant was developed in several stages since year 1968. Nowadays, the facility operates at a design flow rate of 4 m3/s during dry weather and 8 m3/s during heavy rainfalls. This study is focused on the following aspects: wastewater treatment plant’s diagram, the wastewater parameters inside the treatment plant, the biological treatment process analysis and a few conclusions.


2013 ◽  
Vol 67 (5) ◽  
pp. 1051-1057 ◽  
Author(s):  
A. Sobańtka ◽  
H. Rechberger

Extended statistical entropy analysis (eSEA) is used to evaluate the nitrogen (N) budgets of 13 Austrian wastewater treatment plants (WWTPs). The eSEA results are then compared to the WWTPs specific N-removal rates. Among the five WWTPs that achieve a removal rate of 75% the eSEA detects significant differences in the N-performance. The main reason for this is that eSEA considers all N-species and seems to be more discriminating than the N-removal rate. Additionally, the energy consumption and the costs of the mechanical–biological treatment process are related to the N-performance according to the eSEA. The influence of the WWTP size on the energy- and cost-efficiency of the N-treatment is investigated. Results indicate that energy-efficiency does not necessarily coincide with cost-efficiency. It is shown that smaller WWTPs between 22,000 PE (population equivalents) and 50,000 PE can be operated as energy-efficiently as larger WWTPs between 100,000 and 1,000,000 PE. On average, the smaller plants operate less cost-efficiently than the large ones. This research offers a new method for the assessment of the N-performance of WWTPs, and suggests that small WWTPs are not necessarily less energy- and cost-efficient than large ones.


1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


2014 ◽  
Vol 953-954 ◽  
pp. 300-303 ◽  
Author(s):  
Fang Yin ◽  
Wu Di Zhang ◽  
Jing Liu ◽  
Hong Yang

The essence of the two phase anaerobic biological treatment process is to place acid bacteria and methane-producing bacteria in two reactors respectively, where it can provide the optimal conditions for their growth and metabolism, allowing them to live up to their maximal activity, which greatly improve processing capacity and efficiency compared to a single-phase anaerobic digestion. The paper start with the two phase anaerobic digestion process, in order to discuss the development direction of high efficient anaerobic digestion system.


2004 ◽  
Vol 4 (1) ◽  
pp. 23-33
Author(s):  
H. Ødegaard ◽  
Z. Liao ◽  
E. Melin ◽  
H. Helness

Many cities need to build compact wastewater treatment plants because of lack of land. This paper discusses compact treatment methods. An enhanced primary treatment process based on coarse media filtration is analysed. A high-rate secondary wastewater treatment process has specifically been investigated, consisting of a highly loaded moving bed biofilm reactor directly followed by a coagulation and floc separation step. The objective with this high-rate process is to meet secondary treatment effluent standards at a minimum use of chemicals, minimum sludge production and minimum footprint. It is demonstrated that the biofilm in the bioreactor mainly deals with the soluble organic matter while coagulation deals with the colloidal matter. The bioreactor may, therefore, be designed based on the soluble COD loading only, resulting in a very compact plant when a compact biomass/floc separation reactor (i.e. flotation or direct filtration) is used. The paper reports specifically on the coagulant choice in flotation and filter run time in direct filtration.


2019 ◽  
Vol 11 (23) ◽  
pp. 6658 ◽  
Author(s):  
I-Tae Kim

This study was conducted to secure the sustainability of biogas plants for generating resources from food waste (FW) leachates, which are prohibited from marine dumping and have been obligated to be completely treated on land since 2013 in South Korea. The aim of this study is to reduce the nitrogen load of the treatment process while producing bio-methanol using digested FW leachate diverted into wastewater treatment plants. By using biogas in conditions where methylobacter (M. marinus 88.2%) with strong tolerance to highly chlorinated FW leachate dominated, 3.82 mM of methanol production and 56.1% of total nitrogen (TN) removal were possible. Therefore, the proposed method can contribute to improving the treatment efficiency by accommodating twice the current carried-in FW leachate amount based on TN or by significantly reducing the nitrogen load in the subsequent wastewater treatment process. Moreover, the produced methanol can be an effective alternative for carbon source supply for denitrification in the subsequent process.


Sign in / Sign up

Export Citation Format

Share Document