Overview of Federal Law and USEPA Regulations for Urban Runoff

1994 ◽  
Vol 29 (1-2) ◽  
pp. 445-454 ◽  
Author(s):  
Larry A. Roesner ◽  
Paul Traina

Within the last three years, the United States Environmental Protection Agency (USEPA) has taken two significant steps with respect to regulating the quality of storm water discharges from urban areas. The first of these is the development of Final Rules and Regulations for Storm Water Discharges from urban areas with separated waste water and storm drainage systems. Published in late 1990, the rule requires all municipalities with populations over 100,000 to apply for a permit to discharge storm water under the USEPA's National Pollutant Discharge Elimination System (NPDES). The permit application must include, among other things, a plan to reduce the pollutants in urban runoff to the “Maximum Extent Practicable”. The second step is the publication in January, 1993, of a draft policy regulating discharges from combined sewer systems. These two initiatives for water quality control of wet weather discharges from urban drainage systems are significant steps forward in a national program to reduce pollution contributions to receiving waters in urban areas. This paper provides an overview of the requirements of these two wet weather water quality management programs.

2003 ◽  
Vol 47 (7-8) ◽  
pp. 311-317
Author(s):  
X. Swamikannu ◽  
D. Radulescu ◽  
R. Young ◽  
R. Allison

Urban drainage systems historically were developed on principles of hydraulic capacity for the transport of storm water to reduce the risk of flooding. However, with urbanization the percent of impervious surfaces increases dramatically resulting in increased flood volumes, peak discharge rates, velocities and duration, and a significant increase in pollutant loads. Storm water and urban runoff are the leading causes of the impairment of receiving waters and their beneficial uses in Australia and the United States today. Strict environmental and technology controls on wastewater treatment facilities and industry for more than three decades have ensured that these sources are less significant today as the cause of impairment of receiving waters. This paper compares the approach undertaken by the Environmental Protection Authority Victoria for the Melbourne metropolitan area with the approach implemented by the California Environmental Protection Agency for the Los Angeles area to control storm water pollution. Both these communities are largely similar in population size and the extent of urbanization. The authors present an analysis of the different approaches contrasting Australia with the USA, comment on their comparative success, and discuss the relevance of the two experiences for developed and developing nations in the context of environmental policy making to control storm water and urban runoff pollution.


1999 ◽  
Vol 39 (12) ◽  
pp. 9-16 ◽  
Author(s):  
James T. Smullen ◽  
Amy L. Shallcross ◽  
Kelly A. Cave

Urban stormwater quality data collected over the past 20 years for several large government-sponsored sampling programs in the United States were assembled and analyzed to develop new nationwide estimators and statistics for urban storm water quality. We believe that this is the first attempt to assemble and analyze these major storm water quality data sets for this purpose. In this paper, the first public report of our work to-date, we present the results of the data acquisition, data base assembly, quality assurance, computation of new stormwater event mean concentrations and associated statistics, and comparisons with the original U.S. Environmental Protection Agency's Nationwide Urban Runoff Program (NURP) results. The differences between the pooled means and those estimated from our analysis of the NURP data range from a 79% lower estimate for Copper to a 36% higher estimate for Biochemical Oxygen Demand. It is concluded that the variations between the NURP results and those developed here from the pooling of the three national data bases are important and that future work may provide a basis for differentiating Event Mean Concentrations among urban land uses, geographic region and seasons.


1999 ◽  
Vol 39 (12) ◽  
pp. 133-140
Author(s):  
J. Y. Li ◽  
D. Banting

Storm water quality management in urbanized areas remains a challenge to Canadian municipalities as the funding and planning mechanisms are not well defined. In order to provide assistance to urbanized municipalities in the Great Lakes areas, the Great Lakes 2000 Cleanup Fund and the Ontario Ministry of the Environment commissioned the authors to develop a Geographic Information System planning tool for storm water quality management in urbanized areas. The planning tool comprises five steps: (1) definition of storm water retrofit goals and objectives; (2) identification of appropriate retrofit storm water management practices; (3) formulation of storm water retrofit strategies; (4) evaluation of strategies with respect to retrofit goals and objectives; and (5) selection of storm water retrofit strategies. A case study of the fully urbanized Mimico Creek wateshed in the City of Toronto is used to demonstrate the application of the planning tool.


2021 ◽  
Vol 13 (4) ◽  
pp. 1878
Author(s):  
Alan R. Hunt ◽  
Meiyin Wu ◽  
Tsung-Ta David Hsu ◽  
Nancy Roberts-Lawler ◽  
Jessica Miller ◽  
...  

The National Wild and Scenic Rivers Act protects less than ¼ of a percent of the United States’ river miles, focusing on free-flowing rivers of good water quality with outstandingly remarkable values for recreation, scenery, and other unique river attributes. It predates the enactment of the Clean Water Act, yet includes a clear anti-degradation principle, that pollution should be reduced and eliminated on designated rivers, in cooperation with the federal Environmental Protection Agency and state pollution control agencies. However, the federal Clean Water Act lacks a clear management framework for implementing restoration activities to reduce non-point source pollution, of which bacterial contamination impacts nearly 40% of the Wild and Scenic Rivers. A case study of the Musconetcong River, in rural mountainous New Jersey, indicates that the Wild and Scenic Rivers Act can be utilized to mobilize and align non-governmental, governmental, philanthropic, and private land-owner resources for restoring river water quality. For example, coordinated restoration efforts on one tributary reduced bacterial contamination by 95%, surpassing the TMDL goal of a 93% reduction. Stakeholder interviews and focus groups indicated widespread knowledge and motivation to improve water quality, but resource constraints limited the scale and scope of restoration efforts. The authors postulate that the Partnership framework, enabled in the Wild and Scenic Rivers Act, facilitated neo-endogenous rural development through improving water quality for recreational usage, whereby bottom-up restoration activities were catalyzed via federal designation and resource provision. However, further efforts to address water quality via voluntary participatory frameworks were ultimately limited by the public sector’s inadequate funding and inaction with regard to water and wildlife resources in the public trust.


2015 ◽  
Vol 14 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Katherine Phetxumphou ◽  
Siddhartha Roy ◽  
Brenda M. Davy ◽  
Paul A. Estabrooks ◽  
Wen You ◽  
...  

The United States Environmental Protection Agency mandates that community water systems (CWSs), or drinking water utilities, provide annual consumer confidence reports (CCRs) reporting on water quality, compliance with regulations, source water, and consumer education. While certain report formats are prescribed, there are no criteria ensuring that consumers understand messages in these reports. To assess clarity of message, trained raters evaluated a national sample of 30 CCRs using the Centers for Disease Control Clear Communication Index (Index) indices: (1) Main Message/Call to Action; (2) Language; (3) Information Design; (4) State of the Science; (5) Behavioral Recommendations; (6) Numbers; and (7) Risk. Communication materials are considered qualifying if they achieve a 90% Index score. Overall mean score across CCRs was 50 ± 14% and none scored 90% or higher. CCRs did not differ significantly by water system size. State of the Science (3 ± 15%) and Behavioral Recommendations (77 ± 36%) indices were the lowest and highest, respectively. Only 63% of CCRs explicitly stated if the water was safe to drink according to federal and state standards and regulations. None of the CCRs had passing Index scores, signaling that CWSs are not effectively communicating with their consumers; thus, the Index can serve as an evaluation tool for CCR effectiveness and a guide to improve water quality communications.


1996 ◽  
Vol 34 (12) ◽  
pp. 33-40 ◽  
Author(s):  
Y. Hosoi ◽  
Y. Kido ◽  
H. Nagira ◽  
H. Yoshida ◽  
Y. Bouda

The inflow of pollutant load from urban areas and the stagnation of water due to sea water intrusion cause the deterioration of river water quality in tidal zone. In order to improve water quality, various measures such as the reduction of pollutant load by sewage systems, discharge control from sewage treatment plants considering river flow, nutrient removal by aquatic plants, and the dredging of bottom sediments have been examined. The choice of these measures depends on the situation of the river environment and finances. In this study, a field survey was carried out in a typical urban river basin, first. Secondly, on the basis of this survey, a mathematical model was formed to simulate flow and water quality. Several purification alternatives designed for the investigated river basin were comparatively evaluated from the viewpoint of the effect of water quality improvement and their cost. Finally, they were prioritized. Through this case study, a planning process of river water quality management was shown.


2018 ◽  
Vol 11 (6) ◽  
pp. 27 ◽  
Author(s):  
Pengfei Zhang ◽  
Samuel T. Ariaratnam

The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic activities. Subsequently, numerous natural land resources such as green areas or porous soil, which are less flood-prone and more permeable are being converted into buildings, parking lots, roads and underground utilities that are less permeable to storm water runoff from rain events. With the diminishing of the natural landscape that can drain storm water during a rainfall event, urban underground drainage systems are being designed and built to tackle the excess runoff resulting from urbanization. However, the rapid pace of urbanization has profoundly affected the formation of urban runoff thus resulting in the existing underground drainage system being unable to handle current flow conditions. This paper discusses storm water impacts in urbanized areas globally by reviewing historical storm water events and mitigation strategies accompanied with runoff reduction performance that are considered simultaneously for the purpose of relieving the stress on underground drainage systems. It was found that the stormwater impact on ten selected typical urban areas were enormously destructive followed by billions of direct economy loss, fatalities, damaged properties and residents’ relocations. Furthermore, the meta-analysis of selected six runoff mitigation methods indicated that the average runoff reduction percent ranged from 43% to 61% under different rain events in various installed sites across different event years.


Author(s):  
Claude J. Wookey

Water Quality control for construction sites is a requirement at any site within the United States. Erosion Controls are the first, and many times, last preventative measure for water discharge from a site. If these fail, streams, wetlands, or even off-site upland areas (yards, etc.) are adversely affected. Site quality is affected when valuable soil is lost and restoration requires replacement. Human exposure to contaminants, violation of governmental regulations, contractor reputation, and the overall economics involved in construction are at risk.


Sign in / Sign up

Export Citation Format

Share Document