scholarly journals Meta-Analysis of Storm Water Impacts in Urbanized Cities Including Runoff Control and Mitigation Strategies

2018 ◽  
Vol 11 (6) ◽  
pp. 27 ◽  
Author(s):  
Pengfei Zhang ◽  
Samuel T. Ariaratnam

The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic activities. Subsequently, numerous natural land resources such as green areas or porous soil, which are less flood-prone and more permeable are being converted into buildings, parking lots, roads and underground utilities that are less permeable to storm water runoff from rain events. With the diminishing of the natural landscape that can drain storm water during a rainfall event, urban underground drainage systems are being designed and built to tackle the excess runoff resulting from urbanization. However, the rapid pace of urbanization has profoundly affected the formation of urban runoff thus resulting in the existing underground drainage system being unable to handle current flow conditions. This paper discusses storm water impacts in urbanized areas globally by reviewing historical storm water events and mitigation strategies accompanied with runoff reduction performance that are considered simultaneously for the purpose of relieving the stress on underground drainage systems. It was found that the stormwater impact on ten selected typical urban areas were enormously destructive followed by billions of direct economy loss, fatalities, damaged properties and residents’ relocations. Furthermore, the meta-analysis of selected six runoff mitigation methods indicated that the average runoff reduction percent ranged from 43% to 61% under different rain events in various installed sites across different event years.

2020 ◽  
Vol 3 (2) ◽  
pp. 143-154
Author(s):  
Rahmat Faizal ◽  
Noerman Adi Prasetya ◽  
Zikri Alstony ◽  
Aditya Rahman

Tarakan City experiences problems with standing water during the rainy season, especially in the west Tarakan sub-district which is the center of Tarakan. This puddle not only submerged settlements and offices but also shops and access roads that caused considerable economic losses. An evaluation was carried out by using the Storm Water Management Model (SWMM). SWMM is a rainfall-runoff simulation model used for simulating the quantity and quality of surface runoff from urban areas. Based on the evaluation using SWMM software, the drainage system in Tarakan, especially in Jalan Mulwarman has several inundated channels, namely channels 2, 3, 4, 5, 6, 7, 11, 12, 13, 14. This is influenced by the dimensions of the drainage channel that cannot accommodate existing water runoff and sediment thickness that covers the drainage channels so that the capacity is reduced, if it rains it will cause puddles at several points in Tarakan City. In order to deal with these puddles, it is necessary to change the dimensions of the channel and routinely dredge sediments that cover the drainage channels.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2162 ◽  
Author(s):  
Hyatt Green ◽  
Daniel Weller ◽  
Stephanie Johnson ◽  
Edward Michalenko

Fecal contamination of waterbodies due to poorly managed human and animal waste is a pervasive problem that can be particularly costly to address, especially if mitigation strategies are ineffective at sufficiently reducing the level of contamination. Identifying the most worrisome sources of contamination is particularly difficult in periurban streams with multiple land uses and requires the distinction of municipal, agricultural, domestic pet, and natural (i.e., wildlife) wastes. Microbial source-tracking (MST) methods that target host-specific members of the bacterial order Bacteroidales and others have been used worldwide to identify the origins of fecal contamination. We conducted a dry-weather study of Onondaga Creek, NY, where reducing fecal contamination has been approached mainly by mitigating combined sewer overflow events (CSOs). Over three sampling dates, we measured in-stream concentrations of fecal indicator bacteria; MST markers targeting human, ruminant, and canine sources; and various physical–chemical parameters to identify contaminants not attributable to CSOs or stormwater runoff. We observed that despite significant ruminant inputs upstream, these contaminants eventually decayed and/or were diluted out and that high levels of urban bacterial contamination are most likely due to failing infrastructure and/or illicit discharges independent of rain events. Similar dynamics may control other streams that transition from agricultural to urban areas with failing infrastructure.


2013 ◽  
Vol 68 (1) ◽  
pp. 36-42 ◽  
Author(s):  
E. Burszta-Adamiak ◽  
M. Mrowiec

Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.


2020 ◽  
Vol 17 (2) ◽  
pp. 1539-1546
Author(s):  
H. Maseri ◽  
O. S. Selaman ◽  
M. A. Mannan ◽  
S. N. L. Taib

Permeable pavements are a key Storm water management measure employed both to attenuate surface runoff in urban areas and to filter urban storm water pollutants. Existing permeable pavements (PP) are design with the specific percentage porosity whereby enabling excess rainwater to infiltrate through the system and acting as a depression storage at the same time. Depression storage basically refers to the volume of water trapped in the depression when the precipitation of a storm reaches the ground and filled up all the depression before it can flow over the surface. Cylindrical Detention Pond (CDP) is an alternative paving material that may alleviate many of the hydrological problems caused by urban runoff from developed areas. CDP consist of three basic component; top cover, bottom cover and hollow cylindrical at centre (300 mm thickness). The hollow cylindrical has approximate 50 percent porosity from the total solid of component, which is every 1 inch (25 mm) of pavement depth can hold 0.5 inches (12.5 mm) of rain in theoretical. In this study, the depression storage rate of CDP was investigated under three different rainfall intensity scenarios which are 77 mm/hr (low), 153 mm/hr (medium), and 230 mm/hr (heavy) respectively whereby it function to monitoring the analytical trend line. The experiment was conducted in model box in the laboratory under fully saturated condition. It found that the CDP can performed to detent the water until 180 min of excess rainfall for all 2 year ARI, 5 year ARI, 10 year ARI, 20 year ARI, 50 year ARI and 100 year ARI with different rates. CDP’s able to reduce the runoff up to 77% of the total rainfall volume. The result was proved the hollow cylindrical at centre of CDP very effective in runoff volume reduction according to the different ARI trend line projection.


2021 ◽  
Vol 19 (17) ◽  
Author(s):  
Shazmin Shareena Ab. Azis ◽  
Muhammad Najib Mohamed Razali ◽  
Nurul Hana Adi Maimun ◽  
Nurul Syakima Mohd Yusoff ◽  
Mohd Shahril Abdul Rahman ◽  
...  

Modernization has created new impervious urban landscape contributed to major catastrophe. Urban drainage system incapable to convey the excess rainwater resulting in flash flood due to heavy rainfall. The combination of green roof on building have tremendously proved to control stormwater efficiently. This study is conducted to review the efficiency of intensive and extensive green roof in reducing urban storm water runoff. This study identifies characteristic of green roof that contributes to lessening urban storm water runoff. Data was collected based on rigorous literature reviews and analyzed using meta-analysis. Overall, findings revealed intensive green roof performed better in reducing storm water runoff compared to extensive green roof. Green roof performance increases as the depth of substrate increased. Origanum and Sedum plants are both highly effective for intensive and extensive green roofs. The performance of green roof reduces as degree of roof slope increased.


2005 ◽  
Vol 51 (2) ◽  
pp. 139-145 ◽  
Author(s):  
J. Despotovic ◽  
J. Plavsic ◽  
N. Stefanovic ◽  
D. Pavlovic

The paper attempts to explain sources of surplus storm water runoff in urban areas, particularly in relation with functioning of inlets. Inlet capacity (quantity of captured water) and inlet efficiency (portion of the approaching flow rate) have been defined and their relationship with relevant parameters (approaching flow, longitudinal and lateral street slopes) was established through laboratory measurements. Effects of clogging of inlets on inlet capacity were also investigated in laboratory conditions. As a consequence of decreased inlet efficiency, there is a portion of approaching flow that is not captured by the inlet (pass-over flow). If the pass-over flow is considered along a street having numerous inlets, it is easy to estimate the quantity of flow that would accumulate on the pavement. Inlet inefficiency can be significant when overestimation of inlet capacity results in increased distance between consecutive inlets, and when clogging of grates or inadequate placing of inlets causes significant decrease in inlet capacity.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 445-454 ◽  
Author(s):  
Larry A. Roesner ◽  
Paul Traina

Within the last three years, the United States Environmental Protection Agency (USEPA) has taken two significant steps with respect to regulating the quality of storm water discharges from urban areas. The first of these is the development of Final Rules and Regulations for Storm Water Discharges from urban areas with separated waste water and storm drainage systems. Published in late 1990, the rule requires all municipalities with populations over 100,000 to apply for a permit to discharge storm water under the USEPA's National Pollutant Discharge Elimination System (NPDES). The permit application must include, among other things, a plan to reduce the pollutants in urban runoff to the “Maximum Extent Practicable”. The second step is the publication in January, 1993, of a draft policy regulating discharges from combined sewer systems. These two initiatives for water quality control of wet weather discharges from urban drainage systems are significant steps forward in a national program to reduce pollution contributions to receiving waters in urban areas. This paper provides an overview of the requirements of these two wet weather water quality management programs.


Sign in / Sign up

Export Citation Format

Share Document