Biofilm morphology in porous media, a study with microscopic and image techniques

1997 ◽  
Vol 36 (1) ◽  
pp. 1-9 ◽  
Author(s):  
John E. Paulsen ◽  
Eirik Oppen ◽  
Rune Bakke

Biofilm activity, behaviour and our ability to control biofilms depends to a large extent on mass transfer phenomena in the biofilm, at the biofilm-liquid interface and in the bulk liquid. Biofilms respond to changing mass transfer conditions by adjusting morphology, thereby optimising the exchange of matter with their surroundings. Observing biofilm morphology and mass transfer in relevant fluid dynamic conditions can therefore yield essential information to understand and model biofilm behaviour. Lack of such knowledge, as the case is with regards to biofilm behaviour in various porous media, such as sandstone reservoirs, limits our ability to predict biofilm effects. A transparent porous media replica of a sandstone reservoir with cybernetic image processing has been designed to study biofilm related transport phenomena in porous media. The porous medium was inoculated with a mixed bacterial culture and fed a sterile nutrient solution in a once through flow mode. The biofilm was observed by microscopy with automated image analysis. This novel integrated software/hardware cybernetic design allows near real-time, essentially simultaneous, surveillance of several critical sites in the porous network and facilitates selective recording and compilation of observations as a function of the biological activity at each particular site. Biofilm biomass distribution in space and time (morphology and morphological changes) are thereby recorded at a representative selection of sites in the porous structure. Local in-pore flow velocity measurements were carried out by measuring the velocity of suspended particulate matter such as detached cells or clusters of cells. The influence of biofilm morphology on convective mass transport could thereby be observed and recorded. This effect, on a meso scale, was also monitored by sensitive, automated pressure drop measurements across the porous medium cell. Important observations so far include: • Bioweb; the biofilm morphology in porous media is very different from the “classical film”, as it appears more like a spider web where each strand varies in size and shape. • The biofilm maintains a large surface area and minimal biofilm depth, thereby minimising mass transfer resistance between the fluid and the biofilm phase, under the conditions tested. • The biofilm influences the convective flow through pores both locally within pores and effecting the flow distribution between pores. Pores with high initial permeability thereby become less permeable, diverting more flow to less permeable zones in the porous matrix. Large variations in this picture were observed, demonstrating the need for a sophisticated experimental apparatus with high sampling capacity to investigate such an intricate system. The observed biofilm behaviour in porous media has important theoretical and practical implications. Flow diversion and permeability effects are of immediate practical importance, improving the prospects for biological treatment of reservoirs. The information obtained in this study will be applied in mathematical simulations of ground water reservoirs, bioremediation and biological enhanced oil recovery.

2017 ◽  
Vol 4 (7) ◽  
pp. 170103 ◽  
Author(s):  
Chanchal Mondal ◽  
Siddharth G. Chatterjee

The surface of a turbulent liquid is visualized as consisting of a large number of chaotic eddies or liquid elements. Assuming that surface elements of a particular age have renewal frequencies that are integral multiples of a fundamental frequency quantum, and further assuming that the renewal frequency distribution is of the Boltzmann type, performing a population balance for these elements leads to the Danckwerts surface age distribution. The basic quantum is what has been traditionally called the rate of surface renewal. The Higbie surface age distribution follows if the renewal frequency distribution of such elements is assumed to be continuous. Four age distributions, which reflect different start-up conditions of the absorption process, are then used to analyse transient physical gas absorption into a large volume of liquid, assuming negligible gas-side mass-transfer resistance. The first two are different versions of the Danckwerts model, the third one is based on the uniform and Higbie distributions, while the fourth one is a mixed distribution. For the four cases, theoretical expressions are derived for the rates of gas absorption and dissolved-gas transfer to the bulk liquid. Under transient conditions, these two rates are not equal and have an inverse relationship. However, with the progress of absorption towards steady state, they approach one another. Assuming steady-state conditions, the conventional one-parameter Danckwerts age distribution is generalized to a two-parameter age distribution. Like the two-parameter logarithmic normal distribution, this distribution can also capture the bell-shaped nature of the distribution of the ages of surface elements observed experimentally in air–sea gas and heat exchange. Estimates of the liquid-side mass-transfer coefficient made using these two distributions for the absorption of hydrogen and oxygen in water are very close to one another and are comparable to experimental values reported in the literature.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Fujio Kuwahara ◽  
Yoshihiko Sano ◽  
Jianjun Liu ◽  
Akira Nakayama

A porous media approach was proposed to investigate the characteristics of the bifurcating airflow and mass transfer within a lung. The theory of porous media was introduced in order to deal with a large number of bifurcations and a vast scale difference resulting from bifurcations. Upon introducing a two-medium treatment for the air convection and the diffusion in its surrounding wall tissue, the oxygen mass transfer between the inhaling air and the tissue was considered along with the effects of the blood perfusion on the mass transfer within the tissue. The overall mass transfer resistance between the inlet of the trachea and the blood in the capillaries was obtained on the basis of the porous media approach. The analysis reveals that there exists the optimal number of the bifurcation levels, namely, 23, that yields the minimum overall mass transfer resistance for the mass transport from the external air to the red blood cells. The finding is consistent with Bejan’s constructal law, namely, that for a flow system to persist in time, it must evolve in such a way that it provides easier access to its currents.


1971 ◽  
Vol 11 (04) ◽  
pp. 342-350 ◽  
Author(s):  
Abbas A. Alikhan ◽  
S.M. Farouq Ali

Abstract An experimented study was conducted of the recovery of oil from as porous medium overlain and underlain by heat-conducting formations and containing a residual oil or connate water saturation by injection of a small slug of a light hydrocarbon followed by 1/2 PV of hot water driven by a conventional waterflood. The fluid production histories and the temperature distribution obtained showed that a light hydrocarbon sag injected ahead of a hot water slug leads to a considerable increase in oil recovery. The net oil recovery was found to depend on the original oil viscosity, hydrocarbon slug viscosity, and the injection rate. The process was more effective in a previously waterflooded core rather than in one containing connate water. The over-all ratio of the total hydrocarbon produced to the hydrocarbon injected ranged from 1.10 to 3.96, the variation corresponding to the viscosity of the hydrocarbon slug employed. Introduction Numerous methods have been proposed for recovering oil from previously waterflooded porous media. Some methods involve the application of heat in one form or another, while others utilize miscible displacement processes. The proposed method involves a combination of the two, employing a small hydrocarbon slug followed by a slug of hot water, which is driven by a conventional waterflood. An attempt was made to investigate the conditions (residual oil saturation, viscosity, etc.) under which such a method would yield a sizable oil recovery. Use of a solvent dug followed by at heat-carrying agent was earlier considered by Pirela and Farouq Ali. The process was designed to take advantage of the improved ternary-phase equilibrium behavior at elevated temperatures in the alcohol slug process. The experimental runs were conducted under isothermal conditions. In another study, Avendano found that injection of a light crude oil into a core containing a highly viscous oil prior to steam injection led to a large improvement in oil recovery. A number of investigators have studied the effect of water-driven hydrocarbon slugs on oil recovery from waterflooded porous media. Csaszar and Holm employed slugs of propane in waterflood cores containing oils with viscosities ranging from 3 to 9 cp. The volume of the oil recovered was 2 to 3 times the propane injected, the efficiency of the process depending on the amount of mobile oil process depending on the amount of mobile oil near the point of injection and the viscosity of the in-place oil. Wiesenthal used gasoline as an intermediate slug when waterflooding cores containing oils having viscosities of 1.28 to 324 cp. He found that the process was effective in waterflooded porous media, especially in the case of viscous oils. Fitzgerald conducted similar experiments using gasoline and arrived at more or less the same conclusions. The process under consideration involves a combination of miscible displacement and hot waterflooding, both of which have been amply discussed in the literature. A comprehensive survey of miscible displacement has been presented by Perkins and Johnston, while a description of hot Perkins and Johnston, while a description of hot waterflooding may be found elsewhere. In the following, only the most important features of the two processes operating in the combination process will be considered. EXPERIMENTAL APPARATUS AND PROCEDURE PROCEDURE APPARATUS The porous medium used in the present investigation consisted of a steel cube 4 ft in length with a rectangular cross-section and inside dimensions of 1.5 × 3.5 in., packed with 130-mesh glass beads. The resulting core had a porosity of 39.95 percent (PV = 1,690 cc) and permeability of 7 darcies. The core was provided with 15 connections on one side for thermocouples and 5 connections on the other side for transducers. SPEJ P. 342


2012 ◽  
Vol 616-618 ◽  
pp. 197-200
Author(s):  
Tong Jing Liu ◽  
Peng Xiang Diwu ◽  
Bao Yi Jiang

In order to further research in porous media tracer mass transfer diffusion rule based on experiment, the conventional displacement experiment of natural long cores were carried out and the effect of the heterogeneity of microscopic pores structure to tracer mass transfer diffusion was compared. The experiment results show that, when injection rate is close, because the heterogeneity of low permeability core pore structure is stronger and small-scale dash is existed, the output time will be earlier, concentration will rise slowly, and mixed coefficient will be bigger. In terms of the same permeability, because injection rate is low, the pressure difference of two ends is small, the start of porosity is wider and its quantity is less. Therefore, if inject less pore volume of multiples displacement fluid, the output will be present tracer, the pore network of so-called "channeling the effect" will be formed, and mixed constant will be bigger. In homogeneous core, when permeability is close, due to the injection rate increases which exacerbate the actually existed part of microscopic heterogeneity features of the internal core, the output time will be earlier, concentration will rise slowly.


1989 ◽  
Vol 11 (4) ◽  
pp. 20-26
Author(s):  
Duong Ngoc Hai

In the framework of the methods, of multiphase media mechanics the thermo it hydrodynamic process induce by interaction between high-frequency electromagnet ic field and porous medium (first component) containing the second component, which can melt at the temperature Tm and the fluid phase of the latter can move to pressure gradient, is considered. This problem is solved by the combination of native method with sweep method. The effectiveness of iterative coefficient is ermined.


Sign in / Sign up

Export Citation Format

Share Document