Determinant impact of waste collection and composition on anaerobic digestion performance: industrial results

2000 ◽  
Vol 41 (3) ◽  
pp. 291-297 ◽  
Author(s):  
C. Saint-Joly ◽  
S. Desbois ◽  
J-P. Lotti

The performance of the anaerobic digestion process depends deeply on the quality of the waste to be treated. This has been already demonstrated at the lab-scale. The objective of this study is to confirm this result at the industrial scale, with very long representative period and with the same process, the Valorga process. According to the waste quality and the collection type and even with the same conditions of fermentation, the biogas yield can vary by a factor of 1.5 when it is expressed (under normal conditions of pressure and temperature) in m3 biogas/t fresh waste, and by a factor of 2 when it is expressed in m3 CH4/t volatile solids. So, the biogas performance does not characterise a process since it is deeply governed by waste composition. This biogas productivity becomes a pertinent parameter only with consistent and relevant hypothesis and/or analytical results on the waste composition which depends on the collection procedure, the site characteristics and the season.

2016 ◽  
Vol 36 (01) ◽  
pp. 79
Author(s):  
Darwin Darwin ◽  
Yusmanizar Yusmanizar ◽  
Muhammad Ilham ◽  
Afrizal Fazil ◽  
Satria Purwanto ◽  
...  

Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC). Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL). Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL) compared with corn stover that was not pre-treated (405 mL). This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover.Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas ABSTRAKThermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan mikroorganisme anaerobik untuk mengkonversi polimer yang berupa selulosa dan hemiselulosa menjadi biogas. Tujuan dari penelitian ini adalah untuk melakukan kajian mengenai penerapan thermal pre-treatment pada limbah tanaman jagung terhadap proses anaerobik digesi yang meliputi efisiensi proses digesi dan produksi biogas yang dihasilkan. Penelitian ini dilakukan dengan menggunakan reaktor tipe batch yang suhunya dipertahankan pada kondisi mesophilic atau di atas rata-rata suhu kamar (33 ± 2 oC). Hasil penelitian diperoleh bahwa thermal pre-treatment yang diberikan pada limbah tanaman jagung mampu mempercepat proses produksi biogas pada 10 hari pertama sehingga dapat mengurangi lag-phase pada proses anaerobik digesi. Limbah tanaman jagung yang diberikan thermal pre-treatment mengalami perlambatan produksi biogas pada hari ke 26 dengan rata-rata total produksi 12.412,5 mL untuk limbah tanaman jagung yang diberikan thermal pre- treatment selama 15 menit, dan 12.310 mL untuk limbah tanaman jagung yang diberikan thermal pre-treatment selama 25 menit, sedangkan limbah tanaman jagung yang tidak diberikan pre-treatment menghasilkan produksi biogas sebesar 12.557 mL pada hari ke 26. Produksi biogas harian tertinggi terjadi pada substrat yang diberikan thermal pre-treatment 25 menit, dengan produksi biogas tertinggi pada hari ke 9 dengan rata-rata produksi sebesar 915 mL. Substrat yang diberikan thermal pre-treatment 15 menit juga memproduksi biogas jauh lebih tinggi (772,5 mL) pada hari ke 9 jika dibandingkan dengan substrat tanpa diberikan pre-treatment yang hanya memproduksi biogas sebesar 405 mL. Data hasil penelitian menunjukkan bahwa limbah tanaman jagung yang diberikan thermal pre-treatment memperoleh biogas yield lebih tinggi dari pada yang tidak diberikan pre-treatment dimana 670,39 mL/g volatile solids untuk thermal pre- treatment 15 menit, 690,65 mL/g volatile solids untuk thermal pre-treatment 25 menit dan 456,37 mL/g volatile solids untuk limbah tanaman jagung yang tidak diberikan pre-treatment.Kata kunci: Thermal pre-treatment, limbah tanaman jagung, anaerobik digesi, biogas


Author(s):  
Fabio Codignole Luz ◽  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco ◽  
...  

2000 ◽  
Vol 42 (9) ◽  
pp. 41-47 ◽  
Author(s):  
A. Huyard ◽  
B. Ferran ◽  
J.-M. Audic

Regulations for land application of wastewater sludges require the performing of treatment with a high efficiency on pathogens reduction. a reduction of 61% of the Volatile Solids content of the sludge, a reduction of fecal coliform, polio virus and Ascaris egg of 5.5, 4.0 and 2.6 respectively are achieved with a thermmophilic/mesophilic Two Phase Anaerobic Digestion process. According to the EPA 40 CFR 503 regulation, the process produces Class A biosolids and could be recommended as a Process to Further Reduce Pathogens.


2019 ◽  
Vol 4 (1) ◽  
pp. 404-413
Author(s):  
Singh Buta ◽  
Zoltán Szamosi ◽  
Zoltán Siménfalvi

Operational parameters can be easily controlled at lab scale experiments for an anaerobic digestion process. Our aim is to design a lab-scale digester equipped with an impeller to investigate how the geometry of impeller and different mixing modes effect the biogas yield of digester. Further, the methods of measuring the gas volume, gas composition, mixing intensity, torque, temperature are discussed in this article. The assembling of 4 liters digester is described which can be operated at various operating parameters which control the anaerobic digestion process. Mixing is very important to enhance efficiency of an anaerobic digester. To attain mixing Maxblend impeller is used in this lab-scale digester due to its better performance for mixing and power consumption. Various design consideration has been described.


2020 ◽  
Vol 380 ◽  
pp. 122425 ◽  
Author(s):  
Yu Tao ◽  
Mustafa Evren Ersahin ◽  
Dara S.M. Ghasimi ◽  
Hale Ozgun ◽  
Haoyu Wang ◽  
...  

Energy ◽  
2018 ◽  
Vol 161 ◽  
pp. 663-669 ◽  
Author(s):  
Fábio Codignole Luz ◽  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco ◽  
...  

2021 ◽  
Author(s):  
Omar Anaya-Reza ◽  
María Fe Altamirano-Corona ◽  
Gabriel Castelan-Rodríguez ◽  
Sergio Adrian García-González ◽  
Alfonso Durán-Moreno

Abstract Mexico City is one of the largest cities in the world and therefore there is a high generation of waste, of which 44% is equivalent to the Organic Fraction of Municipal Solid Waste (OFMSW). In this work, two case studies are evaluated for the application of biogas obtained in an anaerobic digestion process using OFMSW. CASE I considers obtaining biomethane, while CASE II considers energy cogeneration. The biogas yield was determined and was used to carry out an analysis of the process through an economic and environmental impact evaluation on different amounts of OFMSW (100-500 MT). The net present value of this project does not show the feasibility of the process, unless subsidy support is considered. The value of the smallest subsidy over the total investment to find NPV = 0, is 5.64 % for CASE I and 6.84% for CASE II at 200 MT of OFMSW. The WAste Reduction (WAR) methodology was used, which shows that the potential for environmental impact for the two cases is only 4%. The in-depth research of this work helps to maintain the anaerobic digestion process in a circular economy context, for the supply of energy and the protection of the environment.


2019 ◽  
pp. 451-463 ◽  
Author(s):  
Anne Menert ◽  
Ergo Rikmann ◽  
Merje Michelis ◽  
Tarmo Vaalu ◽  
Viktoria Blonskaja ◽  
...  

In this study different methods of sludge pre-treatment with elevated temperatures andpH have been selected for investigation. Five sets of sludge samples were pretreated asfollows: heating at 70°C for 30 min, at 80°C for 20 min, at 90°C for 10 min, at 100°C forWWTP5 min and NaOH-treatment (pH 12 for 4 hours). For comparison a sample from Tallinn(3:1 mixture of primary (dry solids 5.2%) and activated sludge (dry solids 0.5%))was used. Extra-thermophilic pre-treatment increased the degree of hydrolyses of sludge,enabling the following anaerobic digestion process to proceed faster than that of rawsludge. However, extra-thermophilic pre-treatment was insufficient for removal ofnitrogen and phosphorous. Nitrogen can be easily solubilized during extra-thermophilicpre-treatment but solubilization of phosphorous occurs only through digestion. Theproduction of biogas during anaerobic digestion was also dependant on the quality of theinput of pre-treated sludge. The highest cumulative volume of biogas (124 mUg CODadded) was achieved by pre-treatment at 80°C. The percentage of mineralization of pretreated sludges on mesophilic digestion was the highest with 90°C sample - 65.9%.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 555 ◽  
Author(s):  
Bappi Chowdhury ◽  
Sarmad Bilal Magsi ◽  
Hok Nam Joey Ting ◽  
Bipro Ranjan Dhar

High-solids anaerobic digestion of organic fraction of municipal solid waste often shows inefficient biomethane recovery due to mass transfer limitations. Consequently, this study presents a two-stage anaerobic digestion process combining high-solids anaerobic digestion followed by ultrasonication of digestate and wet-type anaerobic digestion for effective biomethane recovery from the organic fraction of municipal solid waste. The high-solids anaerobic digestion yielded methane production of 210 L CH4/kg volatile solids (VS). The digestate from the high-solids anaerobic digestion process was ultrasonicated at three different specific energy inputs (1000, 2500, and 5000 kJ/kg total solids (TS)). The increases in the soluble chemical oxygen demand (SCOD) concentrations (8%–32%) and volatile solids (VS) removal efficiencies (3.5%–10%) at different specific energy inputs were linearly correlated (R2 = 0.9356). Thus, ultrasonication led to the solubilization of particulate organics and released soluble organic matters. All ultrasonicated digestate samples showed significantly higher biomethane yields than that observed for the untreated digestate samples. The highest methane yield of 132 L CH4/kg VS was observed for a specific energy input of 5000 kJ/kg TS, which was 1.94 times higher than the control (68 L CH4/kg VS). Although specific energy inputs of 1000 kJ/kg TS and 2500 kJ/kg TS showed comparable methane yields (113–114 L CH4/kg VS), they were ~1.67 times higher than the control. Overall, our results suggest that an integrated system of high-solids and wet-type anaerobic digestion with pre-ultrasonication of digestate has the potential to provide a technically viable solution to enhance biomethane recovery from the organic fraction of municipal solid waste.


Author(s):  
Muhammad Muddasar

The world is facing a serious energy crisis and environmental pollution problems due to a sharp increase in the world population. Bioenergy is an eminent solution to these problems. Anaerobic digestion is a green energy technology used worldwide for the conversion of organic waste to biogas. It is reported that organic wastes are hard to digest and need some technical improvement in the anaerobic digestion process to improve biogas yield. Iron-based additives, due to their electron acceptance and donation capabilities, have been emphasized as being exceptional in improving anaerobic digestion process efficiency amongst all other enhancement options. This study reviews the major available types of iron-based additives, their characteristics, and their preparation methods. The preferred iron-based additive that has a significant effect on the enhancement of biogas yield is also discussed. The use of iron-based additives in the anaerobic digestion process with varying dosages and their impact on the biogas generation rate is also being studied. Substrates, operating parameters, and types of anaerobic digesters used in recent studies while researching the effects of iron-based additives are also part of this review. Lastly, this study also confirms that iron-based additives have a significant effect on the reduction rate of the volatile suspended solids, methane content, biogas yield, and volatile fatty acids.


Sign in / Sign up

Export Citation Format

Share Document