scholarly journals Designing of lab-scale anaerobic digester equipped with maxblend impeller to evaluate effect of mixing on anaerobic digestion

2019 ◽  
Vol 4 (1) ◽  
pp. 404-413
Author(s):  
Singh Buta ◽  
Zoltán Szamosi ◽  
Zoltán Siménfalvi

Operational parameters can be easily controlled at lab scale experiments for an anaerobic digestion process. Our aim is to design a lab-scale digester equipped with an impeller to investigate how the geometry of impeller and different mixing modes effect the biogas yield of digester. Further, the methods of measuring the gas volume, gas composition, mixing intensity, torque, temperature are discussed in this article. The assembling of 4 liters digester is described which can be operated at various operating parameters which control the anaerobic digestion process. Mixing is very important to enhance efficiency of an anaerobic digester. To attain mixing Maxblend impeller is used in this lab-scale digester due to its better performance for mixing and power consumption. Various design consideration has been described.

1989 ◽  
Vol 21 (4-5) ◽  
pp. 187-196 ◽  
Author(s):  
F. E. Mosey ◽  
X. A. Fernandes

Concentrations of hydrogen (1-1000 vpm) in the biogas from a laboratory-scale anaerobic digester, fed with (70 g/l) reconstituted skimmed milk as substrate, were intensively monitored to determine whether hydrogen could provide a useful new alarm/loading indicator for the anaerobic digestion process. With fast-fermenting substrates such as milk-sugars it proved to be a very sensitive event-marker, producing small ripples in time with operation of the digester feed pump as well as larger pulses caused by chloroform toxicity. Scavenging of hydrogen by lithotropic methanogens appeared to promote the fermentation of sugars directly to acetate, bypassing both the formation and subsequent breakdown of higher acids, a feature that is likely to prove peculiar to methanogenic and sulphate-reducing fermentations.


Author(s):  
Fabio Codignole Luz ◽  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco ◽  
...  

Energy ◽  
2018 ◽  
Vol 161 ◽  
pp. 663-669 ◽  
Author(s):  
Fábio Codignole Luz ◽  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco ◽  
...  

2017 ◽  
pp. 558-563
Author(s):  
Svetlana Ofverstrom ◽  
Ieva Sapkaite ◽  
Regimantas Dauknys

In this study, the impact of iron and aluminium salts addition on anaerobic digestion process was investigated. Mixture of primary and activated sludge collected at Vilnius wastewater treatment plant in Lithuania was digested under laboratory conditions by using anaerobic digester (W8, Amfield, UK). To compare the relative digestibility of iron-dosed (Fe-dosed)and aliuminium-iron-dosed (Al-Fe-dosed) sludge with un-dosed sludge three continuous experiments were made. Results showed that iron and aliuminium negatively impacted anaerobic digestion process by reducing the volume of biogas produced. Fe-dosed sludge produced 20-50% less biogas and Al-Fe-dosed sludge produced 30-40% less biogas in comparison to the same un-dosed sludge. VS destruction decreased during dosing of Fe or/and Al salt. Biogas composition was not measured during the experiments.


2021 ◽  
Author(s):  
Farizah Fadzil ◽  
Farihah Fadzil ◽  
Amir Fahim Norazman ◽  
Roslinda Seswoya

Abstract Food waste was massively disposed at landfills daily, and this method is no longer effective in managing waste due to the limited space and environmental issues. An alternative solution was explored in managing the food waste, and anaerobic digestion serve as the best solution. Food waste was digested anaerobically in a lab-scale and pilot-scale anaerobic digester. The performance of a batch pilot-scale anaerobic digestion of food waste, on the other hand, is less documented. The goal of this research is to look into a batch pilot-scale anaerobic digester for food waste, with a focus on methane potential and kinetic studies. A single-stage anaerobic digestion of food waste was carried out with an inoculum to substrate ratio (I/S) of 2.0. A variety of tests were carried out to identify the properties of the food waste and the inoculum employed. Effluent was collected daily for the monitoring process. The pH and volatile fatty acid to total alkalinity ratio (VFA/TA) were monitored daily to ensure that the anaerobic digestion process remained stable. The VFA/TA ratio suggested that the anaerobic digestion process was stable throughout the anaerobic digestion process. The methane accumulation for 26 days monitoring is 463250 mL. The ultimate methane yield of 5103.6 mL CH4/gVS was observed. The maximum removal efficiency for TS, VS, and COD in this investigation was 85.32, 94.15, and 93.52 %, showing that food waste was efficiently decomposed for biomethane conversion. The Modified Gompertz (GM) and Logistic function models were used to conduct the kinetic analysis. The results reveal that the GM model provides a higher R2 value than the logistic function model, thus the GM model is more suited in explaining the performance of the anaerobic digestion process.


2021 ◽  
Author(s):  
Omar Anaya-Reza ◽  
María Fe Altamirano-Corona ◽  
Gabriel Castelan-Rodríguez ◽  
Sergio Adrian García-González ◽  
Alfonso Durán-Moreno

Abstract Mexico City is one of the largest cities in the world and therefore there is a high generation of waste, of which 44% is equivalent to the Organic Fraction of Municipal Solid Waste (OFMSW). In this work, two case studies are evaluated for the application of biogas obtained in an anaerobic digestion process using OFMSW. CASE I considers obtaining biomethane, while CASE II considers energy cogeneration. The biogas yield was determined and was used to carry out an analysis of the process through an economic and environmental impact evaluation on different amounts of OFMSW (100-500 MT). The net present value of this project does not show the feasibility of the process, unless subsidy support is considered. The value of the smallest subsidy over the total investment to find NPV = 0, is 5.64 % for CASE I and 6.84% for CASE II at 200 MT of OFMSW. The WAste Reduction (WAR) methodology was used, which shows that the potential for environmental impact for the two cases is only 4%. The in-depth research of this work helps to maintain the anaerobic digestion process in a circular economy context, for the supply of energy and the protection of the environment.


2016 ◽  
Vol 36 (01) ◽  
pp. 79
Author(s):  
Darwin Darwin ◽  
Yusmanizar Yusmanizar ◽  
Muhammad Ilham ◽  
Afrizal Fazil ◽  
Satria Purwanto ◽  
...  

Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC). Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL). Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL) compared with corn stover that was not pre-treated (405 mL). This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover.Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas ABSTRAKThermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan mikroorganisme anaerobik untuk mengkonversi polimer yang berupa selulosa dan hemiselulosa menjadi biogas. Tujuan dari penelitian ini adalah untuk melakukan kajian mengenai penerapan thermal pre-treatment pada limbah tanaman jagung terhadap proses anaerobik digesi yang meliputi efisiensi proses digesi dan produksi biogas yang dihasilkan. Penelitian ini dilakukan dengan menggunakan reaktor tipe batch yang suhunya dipertahankan pada kondisi mesophilic atau di atas rata-rata suhu kamar (33 ± 2 oC). Hasil penelitian diperoleh bahwa thermal pre-treatment yang diberikan pada limbah tanaman jagung mampu mempercepat proses produksi biogas pada 10 hari pertama sehingga dapat mengurangi lag-phase pada proses anaerobik digesi. Limbah tanaman jagung yang diberikan thermal pre-treatment mengalami perlambatan produksi biogas pada hari ke 26 dengan rata-rata total produksi 12.412,5 mL untuk limbah tanaman jagung yang diberikan thermal pre- treatment selama 15 menit, dan 12.310 mL untuk limbah tanaman jagung yang diberikan thermal pre-treatment selama 25 menit, sedangkan limbah tanaman jagung yang tidak diberikan pre-treatment menghasilkan produksi biogas sebesar 12.557 mL pada hari ke 26. Produksi biogas harian tertinggi terjadi pada substrat yang diberikan thermal pre-treatment 25 menit, dengan produksi biogas tertinggi pada hari ke 9 dengan rata-rata produksi sebesar 915 mL. Substrat yang diberikan thermal pre-treatment 15 menit juga memproduksi biogas jauh lebih tinggi (772,5 mL) pada hari ke 9 jika dibandingkan dengan substrat tanpa diberikan pre-treatment yang hanya memproduksi biogas sebesar 405 mL. Data hasil penelitian menunjukkan bahwa limbah tanaman jagung yang diberikan thermal pre-treatment memperoleh biogas yield lebih tinggi dari pada yang tidak diberikan pre-treatment dimana 670,39 mL/g volatile solids untuk thermal pre- treatment 15 menit, 690,65 mL/g volatile solids untuk thermal pre-treatment 25 menit dan 456,37 mL/g volatile solids untuk limbah tanaman jagung yang tidak diberikan pre-treatment.Kata kunci: Thermal pre-treatment, limbah tanaman jagung, anaerobik digesi, biogas


2000 ◽  
Vol 41 (3) ◽  
pp. 291-297 ◽  
Author(s):  
C. Saint-Joly ◽  
S. Desbois ◽  
J-P. Lotti

The performance of the anaerobic digestion process depends deeply on the quality of the waste to be treated. This has been already demonstrated at the lab-scale. The objective of this study is to confirm this result at the industrial scale, with very long representative period and with the same process, the Valorga process. According to the waste quality and the collection type and even with the same conditions of fermentation, the biogas yield can vary by a factor of 1.5 when it is expressed (under normal conditions of pressure and temperature) in m3 biogas/t fresh waste, and by a factor of 2 when it is expressed in m3 CH4/t volatile solids. So, the biogas performance does not characterise a process since it is deeply governed by waste composition. This biogas productivity becomes a pertinent parameter only with consistent and relevant hypothesis and/or analytical results on the waste composition which depends on the collection procedure, the site characteristics and the season.


2014 ◽  
Vol 484-485 ◽  
pp. 423-426
Author(s):  
Guo Han Zhao ◽  
Shun Sheng Yang

Start is an important link of sludge anaerobic digestion process, it is can according to the sludge disposal in sludge volume and there is no vaccination to select the startup method. Gas components are the important study-factors of anaerobic digestive startup, to visually reflect the stability of the anaerobic digestion of the startup process, in order to accurately analyze the causes of imbalance of anaerobic digestion process, to guide the anaerobic digestion system startup.


Author(s):  
Muhammad Muddasar

The world is facing a serious energy crisis and environmental pollution problems due to a sharp increase in the world population. Bioenergy is an eminent solution to these problems. Anaerobic digestion is a green energy technology used worldwide for the conversion of organic waste to biogas. It is reported that organic wastes are hard to digest and need some technical improvement in the anaerobic digestion process to improve biogas yield. Iron-based additives, due to their electron acceptance and donation capabilities, have been emphasized as being exceptional in improving anaerobic digestion process efficiency amongst all other enhancement options. This study reviews the major available types of iron-based additives, their characteristics, and their preparation methods. The preferred iron-based additive that has a significant effect on the enhancement of biogas yield is also discussed. The use of iron-based additives in the anaerobic digestion process with varying dosages and their impact on the biogas generation rate is also being studied. Substrates, operating parameters, and types of anaerobic digesters used in recent studies while researching the effects of iron-based additives are also part of this review. Lastly, this study also confirms that iron-based additives have a significant effect on the reduction rate of the volatile suspended solids, methane content, biogas yield, and volatile fatty acids.


Sign in / Sign up

Export Citation Format

Share Document