Impact of a wastewater treatment plant on Cryptosporidium oocysts and Giardia cysts occurring in a surface water

2000 ◽  
Vol 41 (7) ◽  
pp. 31-37 ◽  
Author(s):  
E. Carraro ◽  
E. Fea ◽  
S. Salva ◽  
G. Gilli

The aim of this study was to assess the impact of a municipal wastewater treatment plant (MWTP) on the occurrence of Cryptosporidium oocysts and Giardia cysts in the receiving water. All MWTP effluent samples were Giardia and Cryptosporidium contaminated, although low mean values were found for both parasites (0.21±0.06 oocysts/L; 1.39±0.51 cysts/L). Otherwise, in the raw sewage a greater concentration was detected (4.5±0.3 oocysts/L; 53.6±6.8 cysts/L). The major occurrence of Giardia over Cryptosporidium, both in the influent and in the effluent of the MWTP, is probably related to the human sewage contribution to the wastewater. Data on protozoa contamination of the receiving water body demonstrated similar concentrations in the samples collected before (0.21±0.07 oocysts/L; 1.31±0.38 cysts/L) and after (0.17±0.09 oocysts/L and 1.01±1.05 cysts/L) the plant effluent discharge. The results of this study suggest that the MWTP has no impact related to Giardia and Cryptosporidium river water contamination, and underline the need for investigation into the effectiveness of these protozoa removal by less technologically advanced MWTPs which are the most widespread and could probably show a lower ability to reduce protozoa.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. Vantarakis ◽  
S. Paparrodopoulos ◽  
P. Kokkinos ◽  
G. Vantarakis ◽  
K. Fragou ◽  
...  

The objective of the study was to investigate the impact on the quality of life of people living close to a municipal wastewater treatment plant. A case control study, including 235 inhabitants living within a 500 m radius by a municipal wastewater treatment plant (cases) and 97 inhabitants living in a different area (controls), was conducted. A standardized questionnaire was self-completed by the participants which examined the general health perception and the overall life satisfaction. Also, the concentration of airborne pathogenic microorganisms in aerosol samples collected around the wastewater treatment plant was investigated. Significant risk for symptoms such as headache, unusual tiredness, and concentration difficulties was recorded and an increased possibility for respiratory and skin diseases was reported. A high rate of the cases being irritable and moody was noticed. Significantly higher gastrointestinal symptoms were also reported among the cases in relation to the controls. The prevalence of pathogenic airborne microorganisms originating from the wastewater treatment plant was reported in high numbers in sampling points close to the wastewater treatment plant. More analytical epidemiological investigations are needed to determine the cause as well as the burden of the diseases to inhabitants living surrounding the wastewater treatment plant.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250514
Author(s):  
Grażyna Płaza ◽  
Łukasz Jałowiecki ◽  
Dominika Głowacka ◽  
Jakub Hubeny ◽  
Monika Harnisz ◽  
...  

Due to limited description of the role and diversity of archaea in WWTPs, the aim of the study was to analyze microbial community structures and diversities with particular regard to Archaea in the samples taken from different stages of the full-scale municipal wastewater treatment plant and effluent receiving water (upstream and downstream discharge point). Our study was focused on showing how the treatment processes influenced the Eubacteria and Archaea composition. Alpha and Beta diversity were used to evaluate the microbial diversity changes in the collected samples. Proteobacteria was the largest fraction ranging from 28% to 67% with 56% relative abundance across all samples. Archaea were present in all stages of WWTP ranged from 1 to 8%. Among the Archaea, two groups of methanogens, acetoclastic (Methanosarcina, Methanosaeta) and hydrogenotrophic methanogens (Methanospirillium, Methanoculleus, Methanobrevibacter) were dominant in the technological stages. The obtained results indicate that the treated wastewater did not significantly affect eubacterial and archaeal composition in receiving water. However, differences in richness, diversity and microbial composition of Eubacteria and Archaea between the wastewater samples taken from the primary and secondary treatment were observed.


Author(s):  
Łukasz Jałowiecki ◽  
Jakub Hubeny ◽  
Monika Harnisz ◽  
Grażyna Płaza

The present study was focused on the identification of multi-resistant bacteria from the WHO priority pathogens list in the samples taken from different stages of the full-scale municipal wastewater treatment plant and receiving water. Additionally, the seasonal variations of the selected multi-resistant pathogens were analyzed in the samples. In order to the aim of the study, the metagenomic DNA from the collected samples was isolated and sequenced. The samples were collected in three campaigns (spring, summer, autumn). Metagenomic DNA was isolated by the commercial kits, according to the manufacturer’s instruction. Illumina sequencing system was employed, and the R program was used to metagenomic analysis. It was found that the wastewater samples and receiving water contained the multi-resistant bacteria from the WHO priority pathogens list. The seasonal and technological variations affected the distribution of the pathogens in the wastewater. No effect of the effluent on the pathogens in the receiving water was observed. The results indicated that antibiotic-resistant “priority pathogens” from the WHO list are there in the waste- and receiving water. Technological process and seasons effected their distribution in the environment. Metagenomic analysis can be used as sufficient tool in microbiological and human health risk assessment.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1339
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 3
Author(s):  
Luis F. Carmo-Calado ◽  
Roberta Mota-Panizio ◽  
Gonçalo Lourinho ◽  
Octávio Alves ◽  
I. Gato ◽  
...  

The technical-economic analysis was carried out for the production of sludge-derived fuel from a municipal wastewater treatment plant (WWTP). The baseline for the analysis consists of a sludge drying plant, processing 6 m3 of sludge per day and producing a total of about 1 m3 of combustible material with 8% of moisture and a higher calorific power of 18.702 MJ/kg. The transformation of biofuel into energy translates into an electricity production of about 108 kW per 100 kg of sludge. The project in the baseline scenario demonstrated feasibility with a payback time of about six years.


Sign in / Sign up

Export Citation Format

Share Document