Microbial population dynamics in laboratory-scale activated sludge reactors

2002 ◽  
Vol 46 (1-2) ◽  
pp. 19-27 ◽  
Author(s):  
K. Kaewpipat ◽  
C.P.L. Grady

As a first step in understanding nonlinear dynamics in activated sludge systems, two laboratory-scale sequencing batch reactors were operated under identical conditions and changes in their microbial communities were followed through microscopic examination, macroscopic observation, and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments from the prokaryotic community. Two experiments were performed. The first used activated sludge from a local wastewater treatment plant to start the replicate reactors. The second used the biomass from the first experiment as a source by intermixing the two and equally redistributing the biomass into the two replicate reactors. For both experiments, the two reactors behaved fairly similarly and had similar microbial communities for a period of 60 days following start-up. Beyond that, the microbial communities in the two reactors in the first experiment diverged in composition, while those in the second experiment remained fairly similar. This suggests that the degree of change occurring in replicate reactors depends upon the severity of perturbation to which they are exposed. The DGGE data showed that the bacterial communities in both experiments were highly dynamic, even though the system performance of the replicate reactors were very similar, suggesting that dynamics within the prokaryotic community is not necessarily reflected in system performance. Moreover, a significant finding from this study is that replicate activated sludge systems are not identical, although they can be very similar if started appropriately.

1993 ◽  
Vol 28 (10) ◽  
pp. 309-316
Author(s):  
Bilsen Beler Baykal

Small activated sludge systems operate in transient states under intermittent and variable flows. Simulations for such a treatment plant in a summer house site operating on a seasonal basis is investigated for system performance and viability using the five component inert soluble substrate generation model. The results have revealed that the viability drops to zero within the first month after the cessation of the feed for intermittently loaded systems that are fed during the summer months, while it never reaches that value for systems operating all year round with reduced flows off season. Restartup is compulsory for the intermittent loadings while the system adapts itself in a stepwise manner for the year round operation. Other factors being comparable, conventional operation with shorter sludge ages may be preferable since viability of the sludge is higher and the effluent COD is comparable.


2018 ◽  
Vol 2017 (2) ◽  
pp. 430-440 ◽  
Author(s):  
H. Abdelrahman ◽  
G. M. Islam ◽  
K. A. Gilbride

Abstract The activated sludge process in a wastewater treatment plant (WWTP) relies on the activity of microbes to reduce the organic and inorganic matter and produce effluent that is safe to discharge into receiving waters. This research examined the effects of the non-steroidal anti-inflammatory drug ibuprofen and the antibiotic tetracycline on the relative abundance and composition of eukaryotes and bacteria in the microbial population present in activated sludge from a WWTP. The current investigation was designed to observe the impact of these contaminants, at low (environmentally relevant concentrations) as well as high concentrations of the drugs. Using 16S and 18S rRNA gene primer sets and quantitative polymerase chain reaction, the abundance of each population was monitored as well as the relative ratio of the two populations under the various conditions. It was found that current environmentally relevant concentrations of ibuprofen (100 ng/mL) stimulated eukaryotic growth but higher concentrations (2,000 ng/mL, 100,000 ng/mL) reduced their numbers significantly especially in the presence of tetracycline. Finally using denaturing gradient gel electrophoresis, some of the more abundant eukaryotes were identified and it was noted that high ibuprofen and tetracycline concentrations favoured the abundance of some genera.


1998 ◽  
Vol 64 (4) ◽  
pp. 1220-1225 ◽  
Author(s):  
Kornelia Smalla ◽  
Ute Wachtendorf ◽  
Holger Heuer ◽  
Wen-tso Liu ◽  
Larry Forney

ABSTRACT BIOLOG GN plates are increasingly used to characterize microbial communities by determining the ability of the communities to oxidize various carbon sources. Studies were done to determine whether the BIOLOG GN plate assay accurately reflects the catabolic potential of the inoculum used. To gain insight into which populations of microbial communities contribute to the BIOLOG patterns, denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis (TGGE) were used to assess the diversity of ribotypes in the inocula and individual wells of BIOLOG plates following incubation. These studies were done with microbial communities from the rhizosphere of potatoes and an activated sludge reactor fed with glucose and peptone. TGGE analyses of BIOLOG wells inoculated with cell suspensions from the potato rhizosphere revealed that, compared with the inoculum, there was a decrease in the number of 16S rRNA gene fragments obtained from various wells, as well as a concomitant loss of populations that had been numerically dominant in the inoculum. The dominant fragments in TGGE gels could be assigned to the γ subclass of the classProteobacteria, suggesting that fast-growing bacteria adapted to high substrate concentrations were numerically dominant in the wells and may have been primarily responsible for the patterns of substrate use that were observed. Similarly, the community structure changed in wells inoculated with cells from activated sludge; one or more populations were enriched, but all dominant populations of the inoculum could be detected in at least one well. This study showed that carbon source utilization profiles obtained with BIOLOG GN plates do not necessarily reflect the functional potential of the numerically dominant members of the microbial community used as the inoculum.


1999 ◽  
Vol 39 (6) ◽  
pp. 61-68 ◽  
Author(s):  
Klangduen Pochana ◽  
Jürg Keller

Experiments have been performed to gain an understanding of the conditions and processes governing the occurrence of SND in activated sludge systems. Sequencing batch reactors (SBRs) have been operated under controlled conditions using the wastewater from the first anaerobic pond in an abattoir wastewater treatment plant. Under specific circumstances, up to 95% of total nitrogen removal through SND has been found in the system. Carbon source and oxygen concentrations were found to be important process parameters. The addition of acetate as an external carbon source resulted in a significant increase of SND activity in the system. Stepwise change of DO concentration has also been observed in this study. Experiments to determine the effect of the floc size on SND have been performed in order to test the hypothesis that SND is a physical phenomenon, governed by the diffusion of oxygen into the activated sludge flocs. Initial results support this hypothesis but further experimental confirmation is still required.


2019 ◽  
Author(s):  
María Victoria Pérez ◽  
Leandro D. Guerrero ◽  
Esteban Orellana ◽  
Eva L. Figuerola ◽  
Leonardo Erijman

ABSTRACTUnderstanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of three years, including a period of nine month of disturbance, characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons and thein situgrowth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the ribosomal RNA (rrn) operon. Despite only moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, as the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCEIn this work we investigated the response of microbial communities to disturbances in a full-scale activated sludge wastewater treatment plant over a time-scale that included periods of stability and disturbance. We performed a genome-wide analysis, which allowed us the direct estimation of specific cellular traits, including the rRNA operon copy number and the in situ growth rate of bacteria. This work builds upon recent efforts to incorporate growth efficiency for the understanding of the physiological and ecological processes shaping microbial communities in nature. We found evidence that would suggest that activated sludge could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions. This paper provides relevant insights into wastewater treatment process, and may also reveal a key role for growth traits in the adaptive response of bacteria to unsteady environmental conditions.


2014 ◽  
Vol 70 (6) ◽  
pp. 1115-1121 ◽  
Author(s):  
Emma Haun ◽  
Katharina Ulbricht ◽  
Regina Nogueira ◽  
Karl-Heinz Rosenwinkel

A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.


2004 ◽  
Vol 70 (12) ◽  
pp. 7053-7065 ◽  
Author(s):  
George Y. Matsui ◽  
David B. Ringelberg ◽  
Charles R. Lovell

ABSTRACT Marine infaunal burrows and tubes greatly enhance solute transport between sediments and the overlying water column and are sites of elevated microbial activity. Biotic and abiotic controls of the compositions and activities of burrow and tube microbial communities are poorly understood. The microbial communities in tubes of the marine infaunal polychaete Diopatria cuprea collected from two different sediment habitats were examined. The bacterial communities in the tubes from a sandy sediment differed from those in the tubes from a muddy sediment. The difference in community structure also extended to the sulfate-reducing bacterial (SRB) assemblage, although it was not as pronounced for this functional group of species. PCR-amplified 16S rRNA gene sequences recovered from Diopatra tube SRB by clonal library construction and screening were all related to the family Desulfobacteriaceae. This finding was supported by phospholipid fatty acid analysis and by hybridization of 16S rRNA probes specific for members of the genera Desulfosarcina, Desulfobacter, Desulfobacterium, Desulfobotulus, Desulfococcus, and Desulfovibrio and some members of the genera Desulfomonas, Desulfuromonas, and Desulfomicrobium with 16S rRNA gene sequences resolved by denaturing gradient gel electrophoresis. Two of six SRB clones from the clone library were not detected in tubes from the sandy sediment. The habitat in which the D. cuprea tubes were constructed had a strong influence on the tube bacterial community as a whole, as well as on the SRB assemblage.


2007 ◽  
Vol 74 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Nancy R. Smith ◽  
Barbara E. Kishchuk ◽  
William W. Mohn

ABSTRACT Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4 + and NO3 − due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.


Sign in / Sign up

Export Citation Format

Share Document