Improving the effluent of small wastewater treatment plants by bacteria reduction and nutrient removal with an algal biofilm

2003 ◽  
Vol 48 (2) ◽  
pp. 373-380 ◽  
Author(s):  
G. Schumacher ◽  
I. Sekoulov

In wastewater ponds, bacteria numbers decrease considerably in the case of raised algae concentrations in the effluent. This shows that algae have a high potential for bacteria reduction in wastewater. Simultaneously, algae remove nutrients from the water for the formation of biomass. However, suspended algae also cause a high secondary pollution in the effluent of wastewater treatment plants. By using attached algae, as they are frequently observed as an algal biofilm in the effluent of wastewater treatment plants, the problem of separation of algae and water can be avoided. Furthermore, the algae can be removed simply from the water. In this study the possibilities for bacteria reduction and nutrient removal were examined with the aid of an algal biofilm. The results show that an algal biofilm process can be used for cases where small amounts of wastewater should be treated and a high quality of the effluent should be attained.

2002 ◽  
Vol 46 (8) ◽  
pp. 83-90 ◽  
Author(s):  
G. Schumacher ◽  
I. Sekoulov

The potential in polishing secondary effluent by an algal biofilm composed of different green and bluegreen algae was investigated. During the photosynthesis process of algal biofilm oxygen was produced while dissolved carbon dioxide was consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH caused precipitation of dissolved phosphates. The attached algae took up nitrogen and phosphorus during the growth of biomass. In addition to nutrient removal, an extensive removal of faecal bacteria was observed probably caused by adsorption of the algal biofilm and by photo-oxidation involving dissolved oxygen. The experimental results suggest that a low-cost, close to nature process especially for small wastewater treatment plants for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm.


2003 ◽  
Vol 47 (11) ◽  
pp. 195-202 ◽  
Author(s):  
G. Schumacher ◽  
T. Blume ◽  
I. Sekoulov

Attached algae settlement is frequently observed in effluents of wastewater treatment plants at locations with sufficient sunlight. For their growth they incorporate nutrients and the surface of the algal biofilm accumulates suspended solids from the clarified wastewater. During the photosynthesis process of algal biofilms oxygen is produced while dissolved carbon dioxide is consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH causes precipitation of dissolved phosphates. Furthermore an extensive removal of faecal bacteria was observed in the presence of algae, which may be caused by the activity of algae. The experimental results indicate the high potential of these attached algae for polishing secondary effluent of wastewater treatment plants. Especially for small wastewater treatment plants a post connected stage for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


1993 ◽  
Vol 28 (11-12) ◽  
pp. 257-261
Author(s):  
M. Truett Garrett ◽  
Zaki Ahmad ◽  
Shelly Young

The recent requirements by U.S.E.P.A. for dechlorination and biomonitoring have increased the importance of automatic control of effluent chlorination in wastewater treatment plants. Difficulties with the Ziegler-Nichols controller tuning procedure were reported at the Kyoto Workshop, 1990. Problems are caused by the noise of incomplete mixing, a long time constant, and the disturbances of changing flow and chlorine demand. The Astrom-Hagglund relay feedback procedure provides acceptable control while data is logged to determine the controller constants. Experiences in using the procedure in existing facilities (not redesigning the mixing point) and the quality of control are presented.


1997 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Vibeke R. Borregaard

In the upgrade of wastewater treatment plants to include biological nutrient removal the space available is often a limiting facor. It may be difficult to use conventional suspended growth processes (i.e. activated sludge) owing to the relatively large surface area required for these processes. Recent years have therefore seen a revived interest in treatment technologies using various types of attached growth processes. The “new” attached growth processes, like the Biostyr process, utilise various kinds of manufactured media, e.g. polystyrene granules, which offer a high specific surface area, and are therefore very compact. The Biostyr plants allow a combination of nitrification-denitrification and filtration in one and the same unit. The results obtained are 8 mg total N/l and an SS content normally below 10 mg/l. The plants in Denmark which have been extended with a Biostyr unit have various levels of PLC control and on-line instrumentation.


2013 ◽  
Vol 67 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
R. Barat ◽  
J. Serralta ◽  
M. V. Ruano ◽  
E. Jiménez ◽  
J. Ribes ◽  
...  

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document