Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment

2003 ◽  
Vol 47 (11) ◽  
pp. 289-295 ◽  
Author(s):  
Y. Peng ◽  
C. Gao ◽  
S. Wang ◽  
M. Ozaki ◽  
A. Takigawa

Deficiency in the nutrient supply such as nitrogen usually results in activated sludge bulking and this phenomenon often takes place in the industrial wastewater treatment plants with activated sludge process. The effects of nitrogen deficiency on activated sludge bulking were studied specially in some experiments carried out in a sequencing batch reactor fed with brewing process wastewater in this paper. The experimental results showed that the sludge settled properly at an influent BOD/N value of 100/4. When the value of BOD/N was 100/3, filaments had an excessive growth at one time during the reaction process. Afterwards, the number of filamentous bacteria began to reduce and simultaneously an excessive growth of viscous Zoogloea with high percentage of moisture was observed and non-filamentous activated sludge bulking occurred. When the influent BOD/N value was 100/2, the excessive growth of filamentous microorganisms could not be observed at all times and the sludge characterization was similar to the case in which BOD/N value was 100/3. When the value of influent BOD/N was 100/0.94, more serious non-filamentous bulking occurred. Furthermore, the effects of nitrogen deficiency on the nitrogen sources and phosphorus sources utilization rate and the COD removal rate were investigated in the experiments.

1988 ◽  
Vol 20 (10) ◽  
pp. 201-210 ◽  
Author(s):  
S. Matsui ◽  
Y. Okawa ◽  
R. Ota

Twenty-eight process wastewaters and thirty-seven organic substances identified in the wastewater of the Kashima petrochemical complex were subjected to biodegradability tests. The tests consisted of the activated sludge degradability method and a supplementary test using the respiration meter method. Both tests utilized the activated sludge of the Fukashiba industrial wastewater treatment plant, which was acclimatized to the wastewater and organic substances. The 28 process wastewaters were classified into biodegradable, less biodegradable, and non-biodegradable according to the percentage TOC removal and the BOD5/TOC ratio of the wastewater. The 37 organic substances were also classified into biodegradable, less biodegradable and non-biodegradable according to TOC and CODMn removal. In general, chlorinated compounds, nitro-aromatics and polymerized compounds were difficult to biodegrade. From the biodegradability tests of the factory wastewaters, it was found that the refractory CODMn loads of these factories contributed to the load remaining in the effluent of the wastewater treatment plant. Various improvements were made to reduce the discharge of refractory substances from the factories.


2016 ◽  
Vol 72 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Carlo Salerno ◽  
Dirk Benndorf ◽  
Sabine Kluge ◽  
Luigi Leonardo Palese ◽  
Udo Reichl ◽  
...  

2014 ◽  
Vol 5 (6) ◽  
pp. 551-556
Author(s):  
Mamdouh Y. Saleh ◽  
◽  
Gaber El Enany ◽  
Medhat H. Elzahar ◽  
Mohamed Z. Elshikhipy ◽  
...  

2002 ◽  
Vol 46 (1-2) ◽  
pp. 551-558 ◽  
Author(s):  
J. van der Waarde ◽  
J. Krooneman ◽  
B. Geurkink ◽  
A. van der Werf ◽  
D. Eikelboom ◽  
...  

Fluorescent In Situ Hybridisation (FISH) was used to monitor the presence of filamentous microorganisms in industrial wastewater treatment plants (WWTPs). Monitoring with a restricted set of FISH probes in WWTPs from potato industry showed growth and decline of Thiothrix populations that could be linked to operational procedures. In a follow up project new FISH probes were developed for filamentous bacteria in industrial WWTPs and 70 WWTPs were analysed for presence of these filaments. Several newly described species of filamentous bacteria appear to be common and dominant in industrial WWTPs. Monitoring of a WWTP from textile industry showed growth and decline of one of these organisms when operational conditions in the plant were varied. The present paper demonstrates that bulking sludge in industrial wastewater treatment plants can effectively be monitored using a combination of standard chemical analyses and the FISH technique.


2000 ◽  
Vol 66 (3) ◽  
pp. 1167-1174 ◽  
Author(s):  
A. C. Layton ◽  
P. N. Karanth ◽  
C. A. Lajoie ◽  
A. J. Meyers ◽  
I. R. Gregory ◽  
...  

ABSTRACT The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work onHyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained fromHyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T inHyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those ofHyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specificHyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed thatHyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed forHyphomicrobium cluster I and Hyphomicrobiumcluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.


Sign in / Sign up

Export Citation Format

Share Document