Start up of deammonification process in one single SBR system

2004 ◽  
Vol 50 (6) ◽  
pp. 1-8 ◽  
Author(s):  
X. Li ◽  
G. Zen ◽  
K.H. Rosenwinkel ◽  
S. Kunst ◽  
D. Weichgrebe ◽  
...  

A process for autotrophic nitrogen removal named aerobic/anoxic deammonification wherein NH4+ is oxidized by nearly 50% to NO2- and subsequently the ammonia is converted together with the nitrite to molecular nitrogen (N2 gas), has come to full-scale application within the last few years. In this research, sludge from a biological rotation disk located at a landfill leachate plant at Mechernich, Germany, which is capable of performing the deammonification process, was used as seed sludge for acclimating deammonification activities in laboratory scale batch-reactors. In parallel, the same tests were performed with normal activated sludge. Research results indicated that deammonification activities could be obtained from the seeded reactor and also, with limited performance, from normal activated sludge in a single SBR system after several months acclimation. It was also seen that oxygen is an important factor that influences the deammonification from both the acclimatization process and process running. Further results were approved that report an impact of nitrite as a process intermediate on the closely related process of anaerobic ammonia oxidation (“Anammox”). However, limiting concentrations on a bacteria population performing deammonification were found to be different to those reported for a pure Anammox-culture. Also the influence of another intermediate, hydrazine, was tested for speeding up the acclimating process by inducing the deammonification activities and recovering the activities of deammonification from nitrite inhibition.

2014 ◽  
Vol 675-677 ◽  
pp. 633-637
Author(s):  
Ze Ya Wang ◽  
Li Ping Qiu ◽  
Li Xin Zhang ◽  
Jia Bin Wang

A set of bench scale ASBR reactors with 0.5 L effective volume were carried out to culture anaerobic ammonia oxidizing bacteria, while the anaerobic granular sludge was inoculated into these reactors as well as the operating temperature is 30±1°C, HRT is 72h and pH is approximate 7.8 in this experiment. After 60 days running, these reactors appeared anaerobic ammonia oxidation phenomenon. When the influent NH4+-N and NO2--N concentrations were approximately 50 mg/L and 70 mg/L, the NH4+-N, NO2--N and TN removal were 80%, 90% and 70%, respectively, the ratio of the NH4+-N and NO2--N removal and NO3--N production is approximately 1:1.5:0.25, close to the theoretical valve of 1:1.32:0.26 and that mainly accord with the chemical equilibrium of anaerobic ammonia oxidation mode. Furthermore, when the phenomenon of anaerobic ammonia oxidation appeared, effluent pH value was slightly higher than influent and the sludge become red.


2021 ◽  
Author(s):  
Amy Jean Pogue

The effect of protozoan grazing on nitrification rates under different conditions was examined. The spatial distribution of ammonia -and nitrite- oxidizing bacteria (AOB and NOB) in activated sludge was also examined using FISH/CSLM. Batch reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations and bacterial numbers in the presence and absence of cycloheximide, a protozoan inhibitor. In the absence of protozoan grazing, rates of nitrification were lower than in batches with protozoa. Spatially, both AOB and NOB were found clustered within the floc and neither inhibiting the protozoa or inhibiting ammonia oxidation appeared to lower the amount of AOB and NOB present or their position. These results suggest that a reduction in protozoan grazing pressure allowed the heterotrophic bacteria to proliferate which caused a corresponding decrease in the rate of nitrification. These results suggest that AOB and NOB are less active in the absence of protozoa and indicates the role of protozoa in the cycling of nitrogen.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 303-308 ◽  
Author(s):  
Leopoldo Mendoza-Espinosa ◽  
Tom Stephenson

Investigations were undertaken in order to compare the grease degradation rates for a natural population of acclimatised activated sludge micro-organisms with a commercial bioaugmentation product (bioadditive) under optimum conditions in laboratory-scale batch reactors. Lard was chosen as the source of grease because it contains the fatty acids more commonly found in urban wastewaters. During acclimatisation, the bioadditive reactor achieved a slightly better chemical oxygen demand (COD) removal efficiency than the activated sludge reactor. Therefore, under optimum conditions, activated sludge was able to degrade grease at nearly the same rate as a bioadditive solution. Moreover, the bioadditive and the activated sludge reactors had very similar kinetics of COD removal under different grease concentrations. It was concluded that the use of natural activated sludge micro-organisms was sufficient to acclimatise biological processes to removing grease.


2007 ◽  
Vol 53 (5) ◽  
pp. 559-571 ◽  
Author(s):  
Amy J. Pogue ◽  
Kimberley A. Gilbride

In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.


2021 ◽  
Author(s):  
Hong Yang ◽  
Xiaotong Wang

In view of the problems of slow start, easy loss and sensitive to low temperature environment in the suspension culture of anaerobic ammonia oxidation bacteria (AnAOB) suspension culture, polyvinyl alcohol (PVA) was used to prepare the anaerobic ammonia oxidation (anammox) immobilized filler, so as to realize the rapid start-up and activity improvement of anammox. Meanwhile, the response of nitrogen removal performance of encapsulated biomass to temperature reduction was determine by batch experiment. In addition, changes in the internal structure, flora composition and diversity of the filler were analyzed by scanning electron microscopy (SEM) and high-throughput sequencing. The results showed that the nitrogen removal capacity of the immobilized filler (E1) was significantly higher than that of the suspended sludge contrast system (S1) after 100d enrichment culture. The final nitrogen removal rate reached 1.168kg·(m3·d-1) -1, and the total nitrogen removal efficiency was 92%. The immobilization improved the resistance of AnAOB to low temperature. At 15°C, the effluent ammonia and nitrite of S1 were seriously accumulated, and E1 could maintain a stable nitrogen removal effect under the regulation of HRT. The population diversity was maintained in the immobilized filler, and the functional bacteria of anammox Candidatus Kuenenia was effectively enriched, accounting for 32.55% in E1. The results of this study provide valuable information for the application and popularization of anammox immobilized filler.


2013 ◽  
Vol 777 ◽  
pp. 221-224 ◽  
Author(s):  
Ya Feng Li ◽  
Wen Jing Zhang

Experiment studies the startup of Anammox and the effect of pH and temperature on the denitrification performance of Anammox. We take the UASB reactor for Anammox startup experimental study, and study the removal of NH4+-N and NO2--N under different temperature and pH. Controlling the influent NH4+-N/NO2--N concentration ratio is 1:1.32, the initial concentration of NH4+-N is 50 mg/L, then increase NH4+-N concentration with gradient of 50 mg/L.We detect the influent and effluent NH4+-N and NO2--N and effluent NO3--N concentration .We also Control the temperature (20°C~40°C) and the pH (6.0~9.0) to study the influencing factors. The optimum temperature is 30°C, the removal rate can reach more than 80%, and the optimum pH is 8, the NH4+-N and NO2--N highest removal rate is 82.92% and 87.59%. The effect of the Anammox reaction can be efficient promotion of denitrification and provides theory basis, which provides reference for engineering application on actual conditions.


2021 ◽  
Author(s):  
Amy Jean Pogue

The effect of protozoan grazing on nitrification rates under different conditions was examined. The spatial distribution of ammonia -and nitrite- oxidizing bacteria (AOB and NOB) in activated sludge was also examined using FISH/CSLM. Batch reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations and bacterial numbers in the presence and absence of cycloheximide, a protozoan inhibitor. In the absence of protozoan grazing, rates of nitrification were lower than in batches with protozoa. Spatially, both AOB and NOB were found clustered within the floc and neither inhibiting the protozoa or inhibiting ammonia oxidation appeared to lower the amount of AOB and NOB present or their position. These results suggest that a reduction in protozoan grazing pressure allowed the heterotrophic bacteria to proliferate which caused a corresponding decrease in the rate of nitrification. These results suggest that AOB and NOB are less active in the absence of protozoa and indicates the role of protozoa in the cycling of nitrogen.


Sign in / Sign up

Export Citation Format

Share Document