Grease biodegradation: is bioaugmentation more effective than natural populations for start-up?

1996 ◽  
Vol 34 (5-6) ◽  
pp. 303-308 ◽  
Author(s):  
Leopoldo Mendoza-Espinosa ◽  
Tom Stephenson

Investigations were undertaken in order to compare the grease degradation rates for a natural population of acclimatised activated sludge micro-organisms with a commercial bioaugmentation product (bioadditive) under optimum conditions in laboratory-scale batch reactors. Lard was chosen as the source of grease because it contains the fatty acids more commonly found in urban wastewaters. During acclimatisation, the bioadditive reactor achieved a slightly better chemical oxygen demand (COD) removal efficiency than the activated sludge reactor. Therefore, under optimum conditions, activated sludge was able to degrade grease at nearly the same rate as a bioadditive solution. Moreover, the bioadditive and the activated sludge reactors had very similar kinetics of COD removal under different grease concentrations. It was concluded that the use of natural activated sludge micro-organisms was sufficient to acclimatise biological processes to removing grease.

1994 ◽  
Vol 30 (3) ◽  
pp. 73-78 ◽  
Author(s):  
O. Tünay ◽  
S. Erden ◽  
D. Orhon ◽  
I. Kabdasli

This study evaluates the characterization and treatability of 2,4-D production wastewaters. Wastewaters contain 20000-40000 mg/l COD, 17000-30000 mg/l chloride and pH is around 1.0. Chemical oxidation with hydrogen peroxide provided almost complete COD removal. The optimum conditions are 3:1 H2O2/COD oxidant dosage, 3000 mg/l Fe3+ as catalyst and pH 3. Partial oxidation at 0.5:1 H2O2//COD ratio is also effective providing 67% COD removal. A batch activated sludge system is used for biological treatability. Dilution is needed to maintain a tolerable chloride concentration which increases through COD removal. pH also increased during COD removal. 85% COD removal is obtained for the 50% dilution at an organic loading of 0.3 day‒1 on a COD basis. Completely and partially oxidized wastewaters are also treated in the activated sludge down to 30 mg/l BOD5.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Jalilzadeh ◽  
Ramin Nabizadeh ◽  
Alireza Mesdaghinia ◽  
Aliakbar Azimi ◽  
Simin Nasseri ◽  
...  

A systematic model for chemical oxygen demand (COD) removal using the ANAMMOX (Anaerobic AMMonium OXidation) process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration equal to 28.75 mg-N/L, pH 7.72, and temperature 31.3°C. Finally, the analysis of the optimum conditions, performed by the response surface method, predicted COD removal efficiency of 81.07% at the optimum condition.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1580
Author(s):  
Farokh laqa Kakar ◽  
Ahmed El Sayed ◽  
Neha Purohit ◽  
Elsayed Elbeshbishy

The main objective of this study was to evaluate the hydrothermal pretreatment’s retention time influence on the volatile fatty acids and biomethane production from thickened waste activated sludge under mesophilic conditions. Six different retention times of 10, 20, 30, 40, 50, and 60 min were investigated while the hydrothermal pretreatment temperature was kept at 170 °C. The results showed that the chemical oxygen demand (COD) solubilization increased by increasing the hydrothermal pretreatment retention time up to 30 min and stabilized afterwards. The highest COD solubilization of 48% was observed for the sample pretreated at 170 °C for 30 min. Similarly, the sample pretreated at 170 °C for 30 min demonstrated the highest volatile fatty acids yield of 14.5 g COD/Lsubstrate added and a methane yield of 225 mL CH4/g TCODadded compared to 4.3 g COD/Lsubstrate added and 163 mL CH4/g TCODadded for the raw sample, respectively. The outcome of this study revealed that the optimum conditions for solubilization are not necessarily associated with the best fermentation and/or digestion performance.


2011 ◽  
Vol 63 (11) ◽  
pp. 2513-2519 ◽  
Author(s):  
J. H. Garcia-Orozco ◽  
A. Vargas-Martinez ◽  
M. A. Ayala-Arnez

The objective of this research was to include ozonation prior to an activated sludge treatment and investigate the effect on the nitrogen species, their fate and the consequences of this oxidation upon the biomass. Three parallel treatment systems were used: the base system, where feed went directly to the activated sludge reactor, and two others, where the influent was ozonated at two different dosages, 15 and 25 mg/L of influent, prior to the biological reactors. The results from the ozonation chamber show a high oxidation capacity of the entering ammonia and organic nitrogen, proportional to the ozone dose. The oxidation product was nitrate. No de-nitrification was expected because a high oxygen concentration (4 mg/L) was maintained in the reactors. The reactors receiving ozonated influent showed a lower assimilation of nitrogen by the biomass. The sludge nitrogen content resulted in 11, 9.3 and 7.4% dry-weight corresponding to no-ozone, low ozone and high ozone dosages, respectively. In spite of the lower ammonia available in the ozonated flows, the corresponding reactors showed a higher specific nitrification rate. The ozonated system also performed better in terms of chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals, besides showing a higher true biomass yield coefficient.


2004 ◽  
Vol 50 (3) ◽  
pp. 67-77 ◽  
Author(s):  
F. Morgan-Sagastume ◽  
D. Grant Allen

Three operating strategies were tested for decreasing activated sludge deflocculation due to temperature shifts from 30° to 45°C: magnesium sludge enrichment, increased sludge retention time (33 d), and spikes of an easily degradable substrate (methanol). The temperature shifts were conducted sequentially in 4 parallel lab-scale sequencing batch reactors (SBRs) treating kraft pulp mill effluent. Three SBRs operated at an SRT = 20 days, and in one of them the sludge was not manipulated, thus, serving as a reference SBR. The temperature shift was associated with decreased soluble chemical oxygen demand (SCOD) removals, decreased sludge settleability and substrate removal capacity, and increased effluent suspended solids (ESS) and turbidity levels. The shift also increased the sludge specific respiration rates and reduced the sludge substrate removal capacity. Sludge deflocculation was assessed as floc solubilisation (increased effluent SCOD levels) and floc fragmentation (increase in effluent solids smaller than 50 mm). Mg enrichment of the sludge and methanol spikes reduced the ESS levels (in 9 and 25%), and the three operating strategies decreased effluent turbidity (in 22-35%) compared to the maximum levels from the non-manipulated reactor (44 mg ESS/L). The stronger sludge floc structure achieved by magnesium enrichment and a high sludge age of 33 days was unsuccessful in significantly decreasing deflocculation. The mechanisms involved in sludge deflocculation require further fundamental research.


2004 ◽  
Vol 50 (3) ◽  
pp. 11-20
Author(s):  
S.S. Helle ◽  
S.J.B. Duff

This study investigated the discrepancies between the BOD removal rates measured during short term assays and those measured during continuous activated sludge treatment of bleached kraft mill effluent (BKME). A combination of batch tests and fed batch tests with oxygen uptake rate (OUR), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and mixed liquor volatile suspended solids (MLVSS) measurements were used to characterize the degradation rates for the activated sludge treatment of BKME and to divide the soluble readily biodegradable substrate into two to five separate fractions based on biodegradation rates. The removal rates varied by over an order of magnitude between the most readily degradable substrates (1 × 10-3 mg COD/mg MLVSS minute), and the more slowly degradable substrates (2 × 10-5 mg COD/mg MLVSS minute). If the readily biodegradable fraction of BKME was modeled as one substrate, initial rate kinetic measurements from batch tests were heavily influenced by the fractions with the greatest degradation rates, while any remaining BOD in the treated effluent was predominantly from the slowly degradable fraction, giving inconsistent results. Taking the multi-component nature of the wastewater into account, batch test results can be used to predict fed-batch and continuous activated sludge reactor performance.


2015 ◽  
Vol 72 (10) ◽  
pp. 1840-1850 ◽  
Author(s):  
Nitin Kumar Singh ◽  
Absar Ahmad Kazmi ◽  
Markus Starkl

The present study summarizes the start-up performance and lessons learned during the start-up and optimization of a pilot-scale plant employing integrated fixed film activated sludge (IFAS) process treating actual municipal wastewater. A comprehensive start-up was tailored and implemented to cater for all the challenges and problems associated with start-up. After attaining desired suspended biomass (2,000–3,000 mg/L) and sludge age (∼7 days), the average biological oxygen demand (BOD) and chemical oxygen demand (COD) removals were observed as 77.3 and 70.9%, respectively, at optimized conditions, i.e. hydraulic retention time (HRT), 6.9 h; return sludge rate, 160%. The influent concentrations of COD, BOD, total suspended solids, NH3-N, total nitrogen and total phosphorus were found to be in the range of 157–476 mg/L, 115–283 mg/L, 152–428 mg/L, 23.2–49.3 mg/L, 30.1–52 mg/L and 3.6–7.8 mg/L, respectively, and the minimum effluent concentrations were achieved as ∼49 mg/L, 23 mg/L, 35 mg/L, 2.2 mg/L, 3.4 mg/L and 2.8 mg/L, respectively, at optimum state. The present system was found effective in the removal of pathogenic bacteria (Escherichia coli, 79%; Salmonella spp., 97.5%; Shigella spp., 92.9%) as well as coliforms (total coliforms, 97.65%; faecal coliforms, 80.35%) without any disinfection unit. Moreover it was observed that the time required for the stabilization of the plant was approximately 3 weeks if other parameters (sludge age, HRT and dissolved oxygen) are set to optimized values.


2012 ◽  
Vol 610-613 ◽  
pp. 347-351
Author(s):  
Guo Chen Zheng ◽  
Zhu Jun Tian ◽  
Jian Zheng Li ◽  
Li Wei ◽  
Ajay Kumar Jha ◽  
...  

A anaerobic baffled reactor (ABR) with an effective volume of 28.7 L was adopted, and the hydrogen production efficiency was investigated with diluted molasses as the substrate. Using a mixture of aerobic and anaerobic activated sludge, the ABR was start-up with a hydraulic retention time (HRT) of 24 h and 35°C. When the influent chemical oxygen demand (COD) concentration was gradually increased from 500 mg/L to 6000 mg/L after a 63-day operation, the ABR kept a steady state. The increase of influent COD concentration, from 6000 mg/L to 8000 mg/L stage by stage, had the remarkable changes on the fermentative system. The ethanol-type fermentation was formed in the first three compartments, while butyric acid-type fermentation in the 4th compartment. In the steady stage at the influent COD of 8000 mg/L, the biogas (H2) yield was found 61.54 L/d (12.85 L/d) while specific H2 production rate of the activated sludge was 48 L/kgMLVSS∙d. Although the ABR system accumulated hydrogen-producing acetogen, due to the hydrogen-consuming bacteria (methanogen and homoacetogenic bacteria), the hydrogen production efficiency was badly inhibited.


2016 ◽  
Vol 33 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Guanghuan Ge ◽  
Jianqiang Zhao ◽  
Kun Gao ◽  
Xiaoqian Ding ◽  
Xiaoling Li ◽  
...  

2014 ◽  
Vol 69 (10) ◽  
pp. 1984-1995 ◽  
Author(s):  
Lana Mallouhi ◽  
Ute Austermann-Haun

Sequencing batch reactors (SBRs) are known for high process stability and usually have a good sludge volume index (SVI). Nevertheless, in many SBRs in Germany for municipal wastewater treatment, scum and foam problems can occur, and SVI can be larger than 200 mL/g. The microscopic investigations of the activated sludge from plants with nitrogen and phosphorus removal have shown that Microthrix parvicella is dominant in the activated sludge in most of them. Studies showed that the optimum growth of M. parvicella is performed at a high sludge age (>20 d) and low sludge load in the range of 0.05–0.2 kg of biochemical oxygen demand per kg of total suspended solids per day (kg BOD5/(TSS·d)). The investigations in 13 SBRs with simultaneous aerobic sludge stabilization (most of them are operated with a system called differential internal cycle strategy sequential batch reactor (DIC-SBR)) show that M. parvicella is able to grow in sludge loads less than 0.05 kg BOD5/(kg TSS·d) as well. To optimize the operation of those SBRs, long cycle times (8–12 h) and dosing of iron salts to eliminate long-chain fatty acids are both recommended. This leads to better SVI and keeps M. parvicella at a low frequency.


Sign in / Sign up

Export Citation Format

Share Document