Sewage-treatment under substantial load variations in winter tourism areas – a full case study

2004 ◽  
Vol 50 (7) ◽  
pp. 147-155 ◽  
Author(s):  
S. Winkler ◽  
N. Natsché ◽  
T. Gamperer ◽  
M. Dum

The sewage-load variations in winter tourism areas are characterized by sudden increases - in the ange of a factor two to three - within only a few days at the start and the end of the tourist season, especially at Christmas. The sudden load increases occur during periods of low wastewater temperatures, which is an additional demanding factor with respect to nitrogen removal. A full case study was carried out at WWTP Saalfelden, which is located near one of Austria's largest skiing resorts. The plant is designed for 80,000 PE and built according to the HYBRID®-concept, which is a special two stage activated sludge process for extensive nutrient removal.

1994 ◽  
Vol 30 (6) ◽  
pp. 181-184 ◽  
Author(s):  
Bernd Dorias ◽  
Peter Baumann

National and international regulations require a minimum nitrogen removal efficiency of 70% in most public sewage treatment plants. Unlike in activated sludge plants, selective denitrification in trickling filters was not possible until now. Therefore the aim was to employ trickling filter plants for selective denitrification, using innovative technology that involved minimum capital expenditure. For selective denitrification, it is necessary to prevent as much as possible the transfer of oxygen into the trickling filter while feeding the nitrate to be removed, a process similar to upstream denitrification in the activated sludge process. In a test operation conducted in several sewage treatment plants for over a year, the new process with selective denitrification in a covered trickling filter has given successful results. The denitrification efficiency of this system is comparable to that of upstream denitrification in the activated sludge process. Thus, selective denitrification in the trickling filter is a practical alternative to other nitrogen removal processes, while maintaining the established advantages offered by the trickling filter process.


1996 ◽  
Vol 33 (12) ◽  
pp. 147-153
Author(s):  
M. Rothman ◽  
J. Hultgren

Bromma sewage treatment plant (STP) is one of three plants in Stockholm. To meet more stringent requirements for nutrient removal the plant has been extended with a final filtration stage. Earlier it has not been possible to operate the plant with nitrification during winter time. Bad settling properties of the activated sludge have led to bulking sludge and high concentrations of BOD and phosphorus in the effluent. With the filter stage it is now possible to reduce the load on the biological stage by by-passing part of the flow directly to the filters. The result has been very promising and it seems that the plant can meet the new demands for nitrogen removal without extension of the aerated volumes.


2006 ◽  
Vol 54 (10) ◽  
pp. 79-86 ◽  
Author(s):  
G. Wandl ◽  
H. Kroiss ◽  
K. Svardal

Two-stage activated sludge plants succeed in stable treatment efficiency concerning carbon removal and nitrification with far less reactor tank volume than conventional single stage systems. In case of large treatment plants this fact is of great economic relevance. Because of the very small specific volume of these two-stage treatment plants in comparison with low loaded single-stage plants, internal cycles have to be applied to ensure sufficient nitrogen removal. Due to these internal cycles two stage activated sludge plants offer many possibilities in terms of process management which results in new process optimisation procedures as compared to conventional single-stage nutrient removal treatment plants. The proposed extension concept for the Main Treatment Plant of Vienna was validated with pilot plant investigations especially with regard to nitrogen removal where it proved to comply with the legal requirements. The operation of the treatment plant can easily be adapted to changes in temperature and sludge volume index occurring in full scale practice. Sludge retention time and aerobic volume in the second stage are controlled in order to secure sufficient nitrification capacity and to optimise nitrogen removal by means of the variation of the loading conditions for the two stages. The investigations confirmed that the specific two-stage activated sludge concept applied in Vienna is an economically advantageous alternative for large wastewater treatment plants with stringent requirements for nitrification and nutrient removal.


1998 ◽  
Vol 38 (1) ◽  
pp. 63-70 ◽  
Author(s):  
H. J. Kiuru ◽  
J. A. Rautiainen

The Laboratory of Environmental Engineering at the Helsinki University of Technology (HUT) carried out in 1991-1995 two successive full-scale research and development projects at the Pihlajaniemi WWTP of Savonlinna concerning biological nutrient removal from municipal wastewater. The projects have resulted in two reports in Finnish with quite large English summaries. This WWTP was constructed originally (1978) as a conventional low-loaded activated sludge plant with the simultaneous precipitation of phosphorus. It was dimensioned for a sludge concentration of 3.5 kgMLSS/m3 in the aeration tanks. Six years later (1984) the plant was fitted with a tertiary stage of flotation filters in order to improve the removal of suspended solids and phosphorus. Nitrification was introduced to the activated sludge process of the plant in 1987. It could be done without any extension by using the sludge concentrations of 6-10 kgMLSS/m3 in the aeration tanks. In that way, this activated sludge process was converted into a very low-loaded one. The process became able to nitrify totally in the circumstances in which the wastewater temperature varies at the range of 4-20°C. The actual hydraulic as well as the BOD7-load of the plant are about 40% of the original dimensioned ones. This activated sludge process of the Pihlajaniemi WWTP was modified in 1991-1993 for nitrogen removal and then in 1994-1995 for both biological phosphorus and nitrogen removal Denitrification was introduced to the process and the simultaneous precipitation of phosphorus in that was replaced by biological phosphorus removal still without any extension of the activated sludge process. The plant has now been operated over four years with biological nutrient removal exploiting the organic carbon compounds of the wastewater. A very little addition of some precipitant is used to improve the biological removal of phosphorus. The chemical and energy cost of the plant has been reduced by some 50% due to the introduction of biological nutrient removal. The BOD7-value of the treated wastewater is mainly less than 3 mg/l (always less than 5 mg/l). The content of total phosphorus in the treated wastewater is usually less than 0.3 mg/l (always less than 0.5 mg/l). The content of total nitrogen in the treated wastewater is mainly 8-12 mg/l. Reductions for BOD7 and total phosphorus over 95% as well as that for total nitrogen about 70% are achieved.


2005 ◽  
Vol 51 (1) ◽  
pp. 89-98 ◽  
Author(s):  
M. Brucculeri ◽  
D. Bolzonella ◽  
P. Battistoni ◽  
F. Cecchi

The possibility of co-treating municipal and winery wastewaters in a conventional activated sludge process was studied at full scale. The wastewater treatment plant considered in this paper operated an extended-oxidation process during vintage (four month per year) and a pre-denitrification/oxidation process during the rest of the year. The experimentation showed that good performances, in terms of COD and nitrogen removal, could be obtained in both cases: 90% and 60%, for COD and nitrogen removal, respectively. Thanks to the high solid retention times applied to the system (up to 48 days) the waste activated sludge production was low (0.20 kgMLVSS/kgCODremoved) and respiration was the main process for carbon removal. Nitrification was always satisfactory while the behaviour of the denitrification process during vintage was not totally understood and further studies are going on.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 113-121
Author(s):  
W. Maier

In view of the new effluent standards in West Germany, including nitrification and phosphorus elimination, many of the existing sewage treatment plants will have to be rebuilt or expanded. Another demand which will have to be dealt with in the near future is denitrification. Under consideration of the large BOD5-loads which were taken into account when designing the plants, many of them nitrify during the summer or can be easily converted to operate with nitrification. Principles for planning the upgrading of such plants have been laid down in order to achieve the required effluent concentrations. The application of these principles is demonstrated with examples of upgraded plants.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


1996 ◽  
Vol 33 (12) ◽  
pp. 243-250 ◽  
Author(s):  
O. Nowak ◽  
A. Franz ◽  
K. Svardal ◽  
V. Müller

By means of theoretical considerations and of statistical evaluations, specific organic and nitrogen loads in separately stabilized sludge have been found to be in the range of 16 to 20g VSS/PE/d and of 1.1 to 1.5 g N/PE/d respectively. About 0.6g P/PE/d are removed from the wastewater in activated sludge plants without chemical or enhanced biological P removal. By using the single-stage activated sludge process without primary sedimentation and without separate sludge stabilization, almost complete nitrogen removal can be achieved, but specific organic and nitrogen loads in the waste sludge are up to two times higher than in separately stabilized sludge.


Sign in / Sign up

Export Citation Format

Share Document