High rate and compact single sludge pre-denitrification process for retrofit

1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.

2005 ◽  
Vol 51 (1) ◽  
pp. 89-98 ◽  
Author(s):  
M. Brucculeri ◽  
D. Bolzonella ◽  
P. Battistoni ◽  
F. Cecchi

The possibility of co-treating municipal and winery wastewaters in a conventional activated sludge process was studied at full scale. The wastewater treatment plant considered in this paper operated an extended-oxidation process during vintage (four month per year) and a pre-denitrification/oxidation process during the rest of the year. The experimentation showed that good performances, in terms of COD and nitrogen removal, could be obtained in both cases: 90% and 60%, for COD and nitrogen removal, respectively. Thanks to the high solid retention times applied to the system (up to 48 days) the waste activated sludge production was low (0.20 kgMLVSS/kgCODremoved) and respiration was the main process for carbon removal. Nitrification was always satisfactory while the behaviour of the denitrification process during vintage was not totally understood and further studies are going on.


2008 ◽  
Vol 58 (4) ◽  
pp. 953-956 ◽  
Author(s):  
L. Balest ◽  
G. Mascolo ◽  
C. Di Iaconi ◽  
A. Lopez

The removal of selected endocrine disrupter compounds (EDCs), namely estrone(E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol A (BPA) and 4-tert-octylphenol (4t-OP) from municipal wastewater was investigated using a sequencing batch biofilter granular reactor (SBBGR), a new system for biological treatment based on aerobic granular biomass. This new biological treatment is characterized by high biomass concentration (up to 40 g/L), high sludge retention times (up to 6 months) and low sludge production (i.e., an order of magnitude lower than commonly reported for conventional biological technologies). The investigation was carried out comparing a demonstration SBBGR system with a conventional full-scale activated sludge process. Results showed that the SBBGR performed better than a conventional activated sludge process in removing E1, E2, BPA and 4t-OP. In fact, the average removal percentages of the above mentioned EDCs, obtained during a four month operating period, were 62.2, 68, 91.8, 77.9% and 56.4, 36.3, 71.3, 64.6% for the demonstrative SBBGR system and the conventional activated sludge process of the municipal sewage treatment plant, respectively


2006 ◽  
Vol 1 (3) ◽  
Author(s):  
Y. Kobayashi ◽  
M. Yasojima ◽  
K. Komori ◽  
Y. Suzuki ◽  
H. Tanaka

Pharmaceuticals resident in sewage and in the aqueous environment has begun to attract attention. The objectives of this research were to clarify the behaviour of selected human antibiotics in wastewater treatment plants, namely levofloxacin (LVFX), clarithromycin (CAM) and azithromycin (AZM) which are much used in Japan. The concentrations in raw influent of LVFX, CAM, AZM were respectively 425~981ng/L, 340~573ng/L, ND(<190 ng/L)~371ng/L. The averages of removal ratio were about 50 % for all selected antibiotics. It was suggested that selected antibiotics was not too much removed in the conventional creature processing like the conventional activated sludge process. The remarkable removals in activated sludge tank using high class treatment method were confirmed about all selected antibiotics. The rise of the concentrations of CAM and AZM was confirmed after the addition of chemical coagulants in one wastewater treatment plant. From the result of batch experiment with activated sludge, it was suggested that LVFX and AZM were removed from water mainly by the absorption to activated sludge. Also, in batch experiment with chemical coagulants, it was suggested that LVFX was removed from water and CAM, AZM were eluted a little in water by adding sulphuric acid band.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 131-138
Author(s):  
Ahmed Fadel

Many of Egypt's cities have existing treatment plants under operation that have been constructed before 1970. Almost all of these treatment plants now need rehabilitation and upgrading to extend their services for a longer period. One of these plants is the Beni Suef City Wastewater Treatment Plant. The Beni Suef WWTP was constructed in 1956. It has primary treatment followed by secondary treatment employing intermediate rate trickling filters. The BOD, COD, and SS concentration levels are relatively high. They are approximately 800, 1100, and 600 mg/litre, respectively. The Beni Suef city required the determination of the level of work needed for the rehabilitation and upgrading of the existing 200 l/s plant and to extend its capacity to 440 l/s at year 2000 A description of the existing units, their deficiencies and operation problems, and the required rehabilitation are presented and discussed in this paper. Major problems facing the upgrading were the lack of space for expansion and the shortage of funds. It was, therefore, necessary to study several alternative solutions and methods of treatment. The choice of alternatives was from one of the following schemes: a) changing the filter medium, its mode of operation and increasing the number of units, b) changing the trickling filter to high rate and combining it with the activated sludge process, for operation by one of several possible combinations such as: trickling filter-solids contact, roughing filter-activated sludge, and trickling filter-activated sludge process, c) dividing the flow into two parts, the first part to be treated using the existing system and the second part to be treated by activated sludge process, and d) expanding the existing system by increasing the numbers of the different process units. The selection of the alternative was based on technical, operational and economic evaluations. The different alternatives were compared on the basis of system costs, shock load handling, treatment plant operation and predicted effluent quality. The flow schemes for the alternatives are presented. The methodology of selecting the best alternative is discussed. From the study it was concluded that the first alternative is the most reliable from the point of view of costs, handling shock load, and operation.


Sign in / Sign up

Export Citation Format

Share Document