Treatment of mixed municipal and winery wastewaters in a conventional activated sludge process: a case study

2005 ◽  
Vol 51 (1) ◽  
pp. 89-98 ◽  
Author(s):  
M. Brucculeri ◽  
D. Bolzonella ◽  
P. Battistoni ◽  
F. Cecchi

The possibility of co-treating municipal and winery wastewaters in a conventional activated sludge process was studied at full scale. The wastewater treatment plant considered in this paper operated an extended-oxidation process during vintage (four month per year) and a pre-denitrification/oxidation process during the rest of the year. The experimentation showed that good performances, in terms of COD and nitrogen removal, could be obtained in both cases: 90% and 60%, for COD and nitrogen removal, respectively. Thanks to the high solid retention times applied to the system (up to 48 days) the waste activated sludge production was low (0.20 kgMLVSS/kgCODremoved) and respiration was the main process for carbon removal. Nitrification was always satisfactory while the behaviour of the denitrification process during vintage was not totally understood and further studies are going on.

1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


2008 ◽  
Vol 58 (4) ◽  
pp. 953-956 ◽  
Author(s):  
L. Balest ◽  
G. Mascolo ◽  
C. Di Iaconi ◽  
A. Lopez

The removal of selected endocrine disrupter compounds (EDCs), namely estrone(E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol A (BPA) and 4-tert-octylphenol (4t-OP) from municipal wastewater was investigated using a sequencing batch biofilter granular reactor (SBBGR), a new system for biological treatment based on aerobic granular biomass. This new biological treatment is characterized by high biomass concentration (up to 40 g/L), high sludge retention times (up to 6 months) and low sludge production (i.e., an order of magnitude lower than commonly reported for conventional biological technologies). The investigation was carried out comparing a demonstration SBBGR system with a conventional full-scale activated sludge process. Results showed that the SBBGR performed better than a conventional activated sludge process in removing E1, E2, BPA and 4t-OP. In fact, the average removal percentages of the above mentioned EDCs, obtained during a four month operating period, were 62.2, 68, 91.8, 77.9% and 56.4, 36.3, 71.3, 64.6% for the demonstrative SBBGR system and the conventional activated sludge process of the municipal sewage treatment plant, respectively


2006 ◽  
Vol 1 (3) ◽  
Author(s):  
Y. Kobayashi ◽  
M. Yasojima ◽  
K. Komori ◽  
Y. Suzuki ◽  
H. Tanaka

Pharmaceuticals resident in sewage and in the aqueous environment has begun to attract attention. The objectives of this research were to clarify the behaviour of selected human antibiotics in wastewater treatment plants, namely levofloxacin (LVFX), clarithromycin (CAM) and azithromycin (AZM) which are much used in Japan. The concentrations in raw influent of LVFX, CAM, AZM were respectively 425~981ng/L, 340~573ng/L, ND(<190 ng/L)~371ng/L. The averages of removal ratio were about 50 % for all selected antibiotics. It was suggested that selected antibiotics was not too much removed in the conventional creature processing like the conventional activated sludge process. The remarkable removals in activated sludge tank using high class treatment method were confirmed about all selected antibiotics. The rise of the concentrations of CAM and AZM was confirmed after the addition of chemical coagulants in one wastewater treatment plant. From the result of batch experiment with activated sludge, it was suggested that LVFX and AZM were removed from water mainly by the absorption to activated sludge. Also, in batch experiment with chemical coagulants, it was suggested that LVFX was removed from water and CAM, AZM were eluted a little in water by adding sulphuric acid band.


1996 ◽  
Vol 34 (10) ◽  
pp. 35-41 ◽  
Author(s):  
Cheng Sheng-shung ◽  
Lin Yuh-Tarng ◽  
Chen Sheng-Kun

In this study, a stream of resin manufacturing wastewater with high contents of organic nitrogenous compounds was treated by a conventional activated sludge process with extended aeration and a modified anoxic denitrification unit followed with two oxic activated sludge units respectively. Performance comparison of these two processes showed that the enhanced biodegradation of organic nitrogen in the modified process was attained with 69.0% of organic nitrogen removal that related to 39.0% removal in the conventional process. The anoxic/oxic process also promoted the removal efficiencies of COD, TKN and TN (total nitrogen) from 91%, 49.6% and 7.4% to 95.3%, 83.8% and 74.4% respectively, in comparison with the conventional extended activated sludge process. These cheerful results also corresponded to the acceptable averaged effluent quality: 82 mg/l of CODs, 48 mg/l of Org.-N, 11 mg/l of NH4+-N, and 42 mg N/l of NO3−-N, that could meet the national effluent standard of ROC-EPA in 1998. The successful investigation also demonstrated that about 50% of the total organic nitrogen removal was achieved in the anoxic unit associated with denitrification, while the residual organic nitrogen was removed in the oxic unit. The pilot-study results suggested that the resin manufacturing wastewater containing high concentration of organic nitrogen should be treated by the anoxic denitrification and oxic nitrification process instead of the conventional activated sludge process with extended aeration.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


2013 ◽  
Vol 807-809 ◽  
pp. 694-698
Author(s):  
Rong Xin Huang ◽  
Zhen Xing Wang ◽  
Gang Liu ◽  
Qi Jin Luo

In order to guarantee the reliability and security of reclaiming water, research on the removal efficiency of the environmental endocrine chemicals (EDCs) --the Phthalate Esters (PAEs) in conventional secondary activated sludge and wastewater reclamation and reuse process was undergoing at Harbin wastewater treatment plant (WWTP). The wastewater samples were colleted from every unit effluent of WWTP. The results showed that contamination of EDCs were presented in municipal wastewater at Harbin and the concentrations of the four PAEs were 21.01μg/L for Di-n-butyl Phthalate (DBP); 9.63μg/L for Di-n-octyl Phthalate (DnOP); 4.56μg/L for Diethyl Phthalate (DEP); 1.96μg/L for Dimethyl Phthalate (DMP) respectively in the influent. The conventional activated sludge has good removal efficiencies performance on DMP, DEP and DBP. With the increasing of molecular weight and branch chains of PAEs contaminations, the removal rate of the four PAEs in the conventional activated sludge process decreased from 99.82%(DMP),90.60%(DEP),90.10%(DBP) to the only 45.13% removal rate for DnOP, which was mostly removed from primary treatment but no from secondary activated sludge process; Coagulation-air flotation plus filtration process was not a feasible way to remove PAEs from reclaiming treatment units.


Sign in / Sign up

Export Citation Format

Share Document