On-line monitoring for control of a pilot-scale sequencing batch reactor using a submersible UV/VIS spectrometer

2004 ◽  
Vol 50 (10) ◽  
pp. 73-80 ◽  
Author(s):  
G. Langergraber ◽  
J.K. Gupta ◽  
A. Pressl ◽  
F. Hofstaedter ◽  
W. Lettl ◽  
...  

A submersible UV/VIS spectrometer was used to monitor a pilot-scale sequencing batch reactor (SBR). The instrument utilises the whole UV/VIS range between 200 and 750 nm. With just one single instrument nitrate, organic matter and suspended solids can be measured simultaneously. The spectrometer is installed directly in the reactor, measures in real-time, and is equipped with an auto-cleaning system using pressured air. The paper shows the calibration results for measurements in the SBR tank, time series for typical SBR cycles, and proposes possible ways for optimisation of the operation by using these measurements.

1998 ◽  
Vol 38 (6) ◽  
pp. 79-88 ◽  
Author(s):  
Hang-Sik Shin ◽  
Sang-Min Lee ◽  
In-Seok Seo ◽  
Goo-Oung Kim ◽  
Kyeong-Ho Lim ◽  
...  

A pilot plant of SBR (Sequencing Batch Reactor) and MF (microfiltration) process was operated in order to treat and reuse the greywater produced from an office building. The performance of SBR for greywater was satisfactory as the effluent had 20 mg/l, 5 mg/l, and 0.5 mg/l of SCOD, BOD, and ammonia, respectively. The cyclic operation of SBR used in this study proved more effective in nitrification and denitrification than the conventional SBR operation. However, the most effective mode was step-feed SBR for denitrification. The decanting system of this SBR discharged the effluent fairly well without sludge washout. However, it was difficult to maintain constant concentration of suspended solid from the SBR process. Thus, additional filtration was needed to get adequate water quality for water reuse. MF could remove residual suspended solids and pathogens as well from the SBR effluent. The suspended solids of final effluent were around 1 mg/l and allowed using the treated water for some purposes.


2015 ◽  
Vol 13 (3) ◽  
pp. 746-757 ◽  
Author(s):  
Bei Long ◽  
Chang-zhu Yang ◽  
Wen-hong Pu ◽  
Jia-kuan Yang ◽  
Guo-sheng Jiang ◽  
...  

Mature aerobic granular sludge (AGS) was inoculated for the start-up of a pilot-scale sequencing batch reactor for the treatment of high concentration solvent recovery raffinate (SRR). The proportion of simulated wastewater (SW) (w/w) in the influent gradually decreased to zero during the operation, while volume of SRR gradually increased from zero to 10.84 L. AGS was successfully domesticated after 48 days, which maintained its structure during the operation. The domesticated AGS was orange, irregular, smooth and compact. Sludge volume index (SVI), SV30/SV5, mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS), extracellular polymeric substances, proteins/polysaccharides, average particle size, granulation rate, specific oxygen utilization rates (SOUR)H and (SOUR)N of AGS were about 38 mL/g, 0.97, 0.52, 39.73 mg/g MLVSS, 1.17, 1.51 mm, 96.66%, 47.40 mg O2/h g volatile suspended solids (VSS) and 8.96 mg O2/h g VSS, respectively. Good removal effect was achieved by the reactor. Finally, the removal rates of chemical oxygen demand (COD), total inorganic nitrogen (TIN), NH4+-N and total phosphorus (TP) were more than 98%, 96%, 97% and 97%, respectively. The result indicated gradually increasing the proportion of real wastewater in influent was a useful domestication method, and the feasibility of AGS for treatment of high C/N ratio industrial wastewater.


2013 ◽  
Vol 68 (6) ◽  
pp. 1406-1411 ◽  
Author(s):  
J. N. Zvimba ◽  
M. Mathye ◽  
V. R. K. Vadapalli ◽  
H. Swanepoel ◽  
L. Bologo

This study investigated Fe(II) oxidation during acid mine drainage (AMD) neutralization using CaCO3 in a pilot-scale Sequencing Batch Reactor (SBR) of hydraulic retention time (HRT) of 90 min and sludge retention time (SRT) of 360 min in the presence of air. The removal kinetics of Fe(II), of initial concentration 1,033 ± 0 mg/L, from AMD through oxidation to Fe(III) was observed to depend on both pH and suspended solids, resulting in Fe(II) levels of 679 ± 32, 242 ± 64, 46 ± 16 and 28 ± 0 mg/L recorded after cycles 1, 2, 3 and 4 respectively, with complete Fe(II) oxidation only achieved after complete neutralization of AMD. Generally, it takes 30 min to completely oxidize Fe(II) during cycle 4, suggesting that further optimization of SBR operation based on both pH and suspended solids manipulation can result in significant reduction of the number of cycles required to achieve acceptable Fe(II) oxidation for removal as ferric hydroxide. Overall, complete removal of Fe(II) during AMD neutralization is attractive as it promotes recovery of better quality waste gypsum, key to downstream gypsum beneficiation for recovery of valuables, thereby enabling some treatment-cost recovery and prevention of environmental pollution from dumping of sludge into landfills.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 131-137 ◽  
Author(s):  
Y.Z. Peng ◽  
J.F. Gao ◽  
S.Y. Wang ◽  
M.H. Sui

In order to achieve fuzzy control of denitrification in a Sequencing Batch Reactor (SBR) brewery wastewater was used as the substrate. The effects of brewery wastewater, sodium acetate, methanol and endogenous carbon source on the relationships between pH, ORP and denitrification were investigated. Also different quantities of brewery wastewater were examined. All the results indicated that the nitrate apex and nitrate knee occurred in the pH and ORP profiles at the end of denitrification. And when carbon was the limiting factor, through comparing the different increasing rate of pH whether the carbon was enough or not could be known, and when the carbon should be added again could be decided. On the basis of this, the fuzzy controller for denitrification in SBR was constructed, and the on-line fuzzy control experiments comparing three methods of carbon addition were carried out. The results showed that continuous carbon addition at a low rate might be the best method, it could not only give higher denitrification rate but also reduce the re-aeration time as much as possible. It appears promising to use pH and ORP as fuzzy control parameters to control the denitrification time and the addition of carbon.


2009 ◽  
Vol 60 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. López–Palau ◽  
J. Dosta ◽  
J. Mata-Álvarez

Aerobic granular sludge was cultivated in a sequencing batch reactor (SBR) in order to remove the organic matter present in winery wastewater. The formation of granules was performed using a synthetic substrate. The selection parameter was the settling time, as well as the alternation of feast-famine periods, the air velocity and the height/diameter ratio of the reactor. After 10 days of operation under these conditions, the first aggregates could be observed. Filamentous bacteria were still present in the reactor but they disappeared progressively. During the start-up, COD loading was increased from 2.7 to 22.5 kg COD/(m3 day) in order to obtain a feast period between 30 and 60 minutes. At this point, granules were quite round, with a particle diameter between 3.0 and 4.0 mm and an average density of 6 g L−1. After 120 days of operation, synthetic media was replaced by real winery wastewater, with a COD loading of 6 kg COD/(m3 day). The decrease of the organic load implied a reduction of the aggregate diameter and a density increase up to 13.2 g L−1. The effluent was free of organic matter and the solids concentration in the reactor reached 6 g VSS L−1.


Sign in / Sign up

Export Citation Format

Share Document