Effect of different water management strategies on water and contaminant fluxes in Doncaster,United Kingdom

2005 ◽  
Vol 52 (9) ◽  
pp. 115-123 ◽  
Author(s):  
J. Rueedi ◽  
A.A. Cronin ◽  
B. Moon ◽  
L. Wolf ◽  
H. Hoetzl

In Europe, large volumes of public water supply come from urban aquifers and so efficient urban water management and decision tools are essential to maintain quality of life both in terms of health, personal freedom and environment. In the United Kingdom, this issue gained increased importance with the last year's low volumes of groundwater replenishment that resulted in increased water shortages all over the country. An urban water volume and quality model (UVQ) was applied to a suburb of Doncaster (United Kingdom) to assess the current water supply system and to compare it with new potential scenarios of water management. The initial results show considerable changes in both water and solute fluxes for some scenarios and rather limited changes for others. Changing impermeable roads and paved areas to permeable areas, for example, would lead to higher infiltration rates that may be welcome from a water resources viewpoint but less so from a water quality point of view due to high concentrations of heavy metals. The biggest impact on water quality and quantity leaving the system through sewer, storm water and infiltration system was clearly obtained by re-using grey water from kitchen, bathroom and laundry for irrigation and toilet flush. The testing of this strategy led to lower volumes and higher concentrations of sewerage, a considerable decrease in water consumption and an increase in groundwater recharge. The scenarios were tested neither in terms of costs nor social acceptance for either water supplier or user.

2020 ◽  
Vol 36 (3) ◽  
pp. 139-151
Author(s):  
William E. Walton ◽  
Kevin Mai ◽  
Andrew Nguyen ◽  
Rex Tse

ABSTRACT Emergent macrophytes play critical roles in water treatment processes of free-water surface constructed treatment wetlands. Management strategies for plant biomass affect wetland function and mosquito populations. Sinking of harvested macrophyte biomass is thought to provide organic carbon that enhances denitrifying bacteria important for nutrient removal while concomitantly reducing harborage for mosquitoes. The effects of sinking versus floating dried plant biomass (California bulrush [Schoenoplectus californicus]) on immature mosquito abundance and water quality (nutrient levels, oxygen demand, and physicochemical variables) were examined in mesocosms (28-m2 ponds or 1.4-m2 wading pools) under different flow regimes in 4 studies. The numbers of mosquito larvae in earthen ponds with floating vegetation were greater than in ponds with sunken vegetation on most dates but did not differ significantly between the 2 vegetation treatments in experiments using wading pools. Differences of the abundance of Anopheles larvae between the 2 vegetation management treatments were larger than for Culex larvae when naturally occurring larval mosquito predators were present. At high turnover rates (>2 pond volumes/day), water quality did not differ significantly between the vegetation management treatments and the water supply. At low turnover rates (approximately 2–6% of water volume/day), water quality differed significantly between the 2 vegetation management treatments and the water supply. Sinking vegetation can enhance the effectiveness of mosquito control but, depending on water management practices, may raise the concentrations of water quality constituents in discharges that are regulated under the Clean Water Act.


J ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 449-466
Author(s):  
Mesia Lufingo

Water supply is a mandatory service for the majority from respective legal public water utilities, and its sustainability reflects implementations of best management strategies at a local level. The objectives of this study were (i) to assess current approaches used in water quality and quantity management and (ii) propose a sustainable domestic water management strategy. This was achieved through secondary water data trends, on-site water quality assessments, visits of water supply and sanitation authorities, and assessment of their performances. It was observed that water supplied in rural-based authorities was quite different from that supplied in an urban setting as far as quality and quantity are concerned; urban-based supplies are more affordable to users than rural ones. A new strategy on water management is presented for sustainable water supply; it is based on controlling groundwater abstractions and preference of surface water in public water supplies. Rural water supply management must learn several practices realized in urban supplies for the betterment of services for the majority of the users.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 149-155 ◽  
Author(s):  
J.P. Antenucci ◽  
R. Alexander ◽  
J.R. Romero ◽  
J. Imberger

Possible management strategies to improve water quality in a eutrophic water supply reservoir in Argentina were evaluated using the one-dimensional coupled hydrodynamics and water quality model DYRESM-CAEDYM. The model was used to determine the effects of several different artificial destratification system designs (including both bubble plume diffusers and surface impellers with draft tubes, both separately and in combination), on the biomass of the potentially toxic cyanobacteria Microcystis aeruginosa. The best results were found by using a combination of a deep and shallow diffuser, to break down the seasonal thermocline and therefore limit sediment nutrient release and anoxia, and to enhance vertical mixing in the surface mixed layer, respectively.


Author(s):  
Mesia Lufingo

Water supply is a mandatory service for Tanzanians from respective legal public water utilities, and their sustainability reflects implementations of best management strategies at a local level. The objective of this study was to assess current approaches used in water quality and quantity management in Tanzania. This was achieved through secondary water data tends, on-site water quality assessments, visits of respective water supply and sanitation authorities, and assessment of their performances. It was observed that water supplied in rural-based authorities was quite different from that supplied in an urban setting as far as quality and quantity is concerned, urban-based supplies being of assistance to users over rural ones. A new strategy on water management is presented for sustainable water supply in Tanzania; it is based on controlling groundwater abstractions and preference of surface water in public water supplies. Rural water supply management must learn several practices realized at urban supplies for the betterment of respective majority water users.


2015 ◽  
Vol 4 (1) ◽  
pp. 355-360
Author(s):  
E D Oruonye ◽  
E Bange

This study examined the challenges of water resource development and management in Zing town,Taraba State, Nigeria. The study considered issues of sources of water supply in Zing town, the nature of water challenges, impacts of the water challenges on the socio-economic life of the people, water management strategies and prospect of urban water resource development in the study area. 110 questionnaires were systematically administered in ten streets that were purposively selected in Zing town. The data were analyzed using descriptive statistics. The result of the finding indicates that majority (45.5%) of the respondent have their water source from borehole, 18.2% streams, 18.2% hand dug wells and 9.1% from other sources (mostly water vendors). The study shows that 68.2% of the respondents had their water point located outside their households, while only 31.8% claimed to have their water sources located within their compounds (this is mostly hand dug wells). The nature of water challenge in the area ranges from severe (50%), not severe (27.3%) and normal (22.7%). The results also shows that only 34% of respondents claimed to have access to sufficient water daily, while 66% of the respondents hardly have access to sufficient water on daily basis. The study shows that the water management strategy adopted mostly by the respondent ranges from storing water in large container (48.2%), reduce water use (29.1%), increase amount spent on water (13.6%) and others 9.1% (mainly re-use of water). The prospect of water resource development in the study area is very bright with the proposal of a small earth dam in Monkin settlement by the Federal Government of Nigeria. The Monkin small earth dam which is meant to generate 500KW of electricity can be integrated into an urban water supply project in the area. This will assure more reliable water supply all year round. It will also help to overcome some of the challenges of servicing the hand pumps which rendered them inadequate when they break down. This study recommends the need to replace the old and obsolete borehole equipment with new ones and increase the number of boreholes to meet the increasing water demand in the area.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


2011 ◽  
Vol 8 (2) ◽  
pp. 103-118 ◽  
Author(s):  
Tong Thi Hoang Duong ◽  
Avner Adin ◽  
David Jackman ◽  
Peter van der Steen ◽  
Kala Vairavamoorthy

2010 ◽  
Vol 10 (4) ◽  
pp. 618-628 ◽  
Author(s):  
A. N. Angelakis ◽  
D. S. Spyridakis

The evolution of urban water management in ancient Greece begins in Crete during the Middle Bronze and the beginning of the Late Bronze Ages (ca. 2000–1500 B.C.) when many remarkable developments occurred in several stages as Minoan civilization flourished on the island. One of its salient characteristics was the architectural and hydraulic function of its water supply and sewerage systems in the Minoan Palaces and several other settlements. These technologies, though they do not give a complete picture of water supply and wastewater and storm water technologies in ancient Greece, indicate nevertheless that such technologies have been used in Greece since prehistoric times. Minoan water and wastewater technologies were diffused to the Greek mainland in the subsequent phases of Greek civilization, i.e. in the Mycenaean, Archaic, Classical, Hellenistic and Roman periods. The scope of this article is the presentation of the most characteristic forms of ancient hydraulic works and related technologies and their uses in past Greek civilizations.


Sign in / Sign up

Export Citation Format

Share Document